

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

B. Tech (Regular-Full time)

(Effective for the students admitted into I B.Tech from the Academic B.Tech 2023-24 onwards)

CSE- ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

COURSE STRUCTURE

&

SYLLABUS

III B.Tech I Semester CSE (AI & ML)

S.No	Course Code	Title	L	T	P	Credits
1	23A33501	Natural Language Processing	3	0	0	3
2	23A33502	Operating Systems & System Programming	3	0	0	3
3	23A33503	Computer Vision & Image Processing	3	0	0	3
4		Professional Elective-I	3	0	0	3
	23A30504a	1. Data Visualization				
	23A05503b	2. Soft computing				
	23A30504c	3. Exploratory Data Analysis with Python				
	23A33504	4. Computational Intelligence				
5		Open Elective- I	3	0	0	3
6	23A33505	Computer Vision & Machine Learning Lab	0	0	3	1.5
7	23A33506	AI & System Programming Lab	0	0	3	1.5
8		Skill Enhancement course	0	1	2	2
	23A05505	Full Stack Development-II				
9	23A03508	Tinkering Lab	0	0	2	1
10	23A33507	Evaluation of Community Service	-	-	-	2
		Internship				
		Total	15	1	10	23

Open Elective – I

S.No.	Course Code	Course Name	Offered by the Dept.
1	23A01505a	Green Buildings	CIVII
2	23A01505b	Construction Technology and Management	CIVIL
3	23A02505	Electrical Safety Practices and Standards	EEE
4	23A03505	Sustainable Energy Technologies	ME
5	23A04505	Electronic Circuits	ECE
6	23A54501	Mathematics for Machine Learning and AI	Mathematics
7	23A56501	Materials Characterization Techniques	Physics
8	23A51501	Chemistry of Energy Systems	Chemistry
9	23A52502a	English for Competitive Examinations	I I
10	23A52502b	Entrepreneurship and New Venture Creation	Humanities

Note:

- 1. A student is permitted to register for Honours or a Minor in IV semester after the results of III Semester are declared and students may be allowed to take maximum two subjects per semester pertaining to their Minor from V Semester onwards.
- 2. A student shall not be permitted to take courses as Open Electives/Minor/Honours with content substantially equivalent to the courses pursued in the student's primary major.
- 3. A student is permitted to select a Minor program only if the institution is already offering a Major degree program in that discipline.

III B.Tech II Semester –CSE (AI & ML)

S.No	Course Code	Title	L	T	P	Credits		
1	23A30604b	Cloud Computing for AI	3	0	0	3		
2	23A33601	Big Data Analytics & AI Applications	3	0	0	3		
3	23A33602	Full Stack AI Development	3	0	0	3		
4		Professional Elective-II	3	0	0	3		
	23A33603a	1. Graph Neural Networks						
	23A32603	2. Recommender Systems						
	23A30603b	3. Predictive Analytics/						
	23A33603b	4. Blockchain for AI						
5		Professional Elective-III	3	0	0	3		
	23A32604	1. Quantum Computing						
	23A30603c	2. AI for Finance						
	23A30604c	3. Social Network Analysis						
	23A33604	4. Cybersecurity & AI-driven Threat						
		Detection						
6		Open Elective – II	3	0	0	3		
7	23A33605	Big Data & Cloud Computing Lab	0	0	3	1.5		
8	23A33606	Full Stack AI Lab	0	0	3	1.5		
9	23A52501	Skill Enhancement course	0	1	2	2		
		Soft skills						
10	23A52601	Audit Course	2	0	0	-		
		Technical Paper Writing & IPR						
		Total	19	1	06	23		
	Mandatory Industry Internship of 08 weeks duration during summer vacation							

Open Elective – II

S.No.	Course Code	Course Name	Offered by the
			Dept.
1	23A01606a	Disaster Management	CIVIL
2	23A01606b	Sustainability In Engineering Practices	CIVIL
3	23A02605	Renewable Energy Sources	EEE
4	23A03606	Automation and Robotics	ME
5	23A04606	Digital Electronics	ECE
6	23A54601a	Optimization Techniques	
7	23A54601b	Mathematical Foundation Of Quantum Technologies	Mathematics
8	23A56601	Physics Of Electronic Materials And Devices	Physics
9	23A51601	Chemistry Of Polymers And Applications	Chemistry
10	23A52602	Academic Writing and Public Speaking	Humanities

IV B.Tech I Semester CSE (AI & ML)

S.No	Course Code	Title	L	T	P	Credits
1	23A30701	Generative AI	3	0	0	3
2		Management Course- II	2	0	0	2
	23A52701a	1.Business Ethics and Corporate Governance				
	23A52701b	2.E-Business				
	23A52701c	3.Management Science				
3		Professional Elective-IV	3	0	0	3
	23A33701a	1. Explainable AI & Model Interpretability				
	23A33701b	2. AI in Cyber Security				
	23A33701c	3. AI-driven Software Engineering & DevOps				
	23A33701d	4. AI for Robotics				
4		Professional Elective-V	3	0	0	3
	23A33702a	1. MLOps & AI Model Deployment				
	23A30703a	2. Data Wrangling				
	23A33702b	3. Healthcare AI				
	23A33702c	4. AI for Smart Cities & IoT Systems				
5		Open Elective-III	3	0	0	3
6		Open Elective-IV	3	0	0	3
7		Skill Enhancement Course	0	1	2	2
	23A05703	Prompt Engineering				
8	23A52702	Audit Course	2	0	0	-
		Gender Sensitization				
9	23A33703	Evaluation of Industry Internship	-	-	-	2
		Total	19	1	2	21

Open Elective – III

S.No	Course Code	Course Name	Offered by the Dept.
1	23A01705a	Building Materials and Services	CIVIL
2	23A01705b	Environmental Impact Assessment	CIVIL
3	23A02704	Smart Grid Technologies	EEE
4	23A03704	3D Printing Technologies	ME
5	23A04503T	Microprocessors and Microcontrollers	ECE
6	23A54701	Wavelet transforms and its Applications	Mathematics
7	23A56701a	Smart Materials And Devices	Physics
8	23A56701b	Introduction to Quantum Mechanics	Physics
9	23A51701	Green Chemistry And Catalysis For Sustainable	Chemistry
<i>J</i>	23/1/01	Environment	Chemistry
10	23A52703	Employability Skills	Humanities

S.No	Course Code	Course Name	Offered by the Dept.
1	23A01706a	Geo-Spatial Technologies	CIVIL
2	23A01706b	Solid Waste Management	CIVIL
3	23A02705	Electric Vehicles	EEE
4	23A03705	Total Quality Management	ME
5	23A04704	Transducers and Sensors	ECE
6	23A54702	Financial Mathematics	Mathematics
7	23A56702	Sensors And Actuators For Engineering Applications	Physics
8	23A51702	Chemistry Of Nanomaterials and Applications	Chemistry
9	23A52704	Literary Vibes	Humanities

IV B.Tech II Semester CSE (AI & ML)

S.No.	Course code	Title	Category	L	T	P	Credits
1	22 4 22001	Internship		-	-	24	4
	23A33801	Project					8
	Total						12

COURSES OFFERED FOR HONOURS DEGREE IN CSE-AI & ML

S. No	Course Code	Course Name	Contact Hours Per Week		Credit	
INO	Code		L	T	P	S
1	23A33H01	Advanced Machine Learning & AI Systems	3	0	0	3
2	23A33H02	Deep Learning & Neural Networks Architectures	3	0	0	3
3	23A33H03	Reinforcement Learning & Decision Making	3	0	0	3
4	23A33H04	AI for Robotics & Automation	3	0	0	3
5	23A33H05	AI Ethics, Fairness & Explainability	3	0	0	3
6	23A33H06	AI & Machine Learning Lab	0	0	3	1.5
7	23A33H07	Robotics & Autonomous Systems Lab	0	0	3	1.5

LIST OF MINORS OFFERED TO CSE AI & ML

S.No.	Minor Title	Department offering the Minor			
1	Building Planning & Construction Technology	Civil			
2	Micro Grid Technology	EEE			
3	Energy Systems	EEE			
4	3D Printing	ME			
5	Industrial Engineering	ME			
6	Embedded Systems and IoT	ECE & VLSI			
7	Electronic Systems	ECE & VL3I			

NATUDAL LANCHACE I	NATURAL LANGUAGE PROCESSING	L	T	P	C
23A33501	(Professional Core)	3	0	0	3

COURSE OBJECTIVES:

- 1. To provide a strong foundation in the principles and techniques of Natural Language Processing (NLP).
- 2. To introduce classical and deep learning-based approaches to NLP tasks.
- 3. To enable students to build and evaluate models for various NLP applications such as text classification, sentiment analysis, and machine translation.
- 4. To expose students to modern tools and libraries used in NLP such as NLTK, SpaCy, and HuggingFace Transformers.
- 5. To provide insights into the challenges of multilingual NLP and ethical concerns.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

- 1. Understand the fundamentals and challenges of natural language understanding.
- 2. Apply linguistic preprocessing techniques such as tokenization, stemming, POS tagging, and parsing.
- 3. Implement NLP algorithms for tasks like classification, translation, and information retrieval.
- 4. Develop deep learning models using RNNs, LSTMs, and Transformer-based architectures for NLP.
- 5. Use NLP tools and libraries to analyze and interpret natural language data in real-world scenarios.

UNIT I: Fundamentals of Natural Language Processing

Introduction to NLP: Definitions, Applications, Challenges, Linguistic Essentials: Syntax, Semantics, Pragmatics, Text Processing: Tokenization, Lemmatization, Stemming, Stopword Removal, Normalization, and N-gram Generation, POS Tagging and Named Entity Recognition, NLP Libraries: NLTK, SpaCy Overview.

UNIT II: Text Representation and Statistical NLP

Bag of Words and TF-IDF, Language Modeling: Unigrams, Bigrams, N-gram Models, Word Embeddings: Word2Vec, GloVe, FastText, Cosine Similarity and Distance Measures, Text Classification using Naive Bayes and SVM, Evaluation Metrics: Accuracy, Precision, Recall, F1.

UNIT III: Deep Learning for NLP

Neural Network Basics for NLP, Recurrent Neural Networks (RNNs) and Limitations, LSTM and GRU Networks, Sequence Labeling: POS Tagging, NER using Bi-LSTM, Text Classification using CNNs and RNNs, Model Evaluation and Hyperparameter Tuning.

UNIT IV: Transformers and Advanced NLP

Attention Mechanism and Self-Attention, Transformer Architecture: Encoder-Decoder Models, Pretrained Language Models: BERT, RoBERTa, GPT, Fine-tuning Transformers for Text Classification, Question Answering and Text Summarization using Transformers, Sentiment Analysis and Zero-shot Classification.

UNIT V: Applications, Ethics, and Multilingual NLP

Machine Translation: Rule-based vs Neural MT, Chatbots and Conversational AI, Information Retrieval and Question Answering, Speech-to-Text and Text-to-Speech Overview, Multilingual NLP and Low-Resource Languages, Bias, Fairness, and Ethics in NLP.

TEXTBOOKS:

- 1. Daniel Jurafsky and James H. Martin, Speech and Language Processing, Pearson Education.
- 2. Steven Bird, Ewan Klein, Edward Loper, Natural Language Processing with Python, O'Reilly Media.
- 3. Yoav Goldberg, Neural Network Methods in NLP, Morgan & Claypool.

REFERENCE BOOKS:

- 1. Jacob Eisenstein, Introduction to Natural Language Processing, MIT Press.
- 2. Delip Rao and Brian McMahan, Natural Language Processing with PyTorch, O'Reilly.
- 3. Thushan Ganegedara, Transformers for Natural Language Processing, Packt Publishing.

III B.Tech I Semester

	OPERATING SYSTEM & SYSTEM	L	T	P	C
23A33502	PROGRAMMING (Professional Core)	3	0	0	3

Course Objectives:

- 1. To introduce the fundamental concepts, structures, and services of modern operating systems.
- 2. To explore process management concepts including scheduling, synchronization, and deadlock handling techniques.
- 3. To impart knowledge on memory and file system management techniques, including paging, segmentation, and disk scheduling.
- 4. To explain I/O system management, security principles, and introduce Unix/Linux system functionalities.
- 5. To introduce system software components including language processors, assemblers, macro processors, linkers, loaders, and their design.

Course Outcomes:

By the end of this course, students will be able to:

- 1. Understand and analyze the basic structure and functions of operating systems and different OS types. (*Knowledge*, *Understand BTL* 1, 2)
- 2. Illustrate process management concepts including states, scheduling algorithms, synchronization methods, and deadlock handling. (*Understand*, *Apply BTL 2*, 3)
- 3. Explain and evaluate memory management techniques and file system functionalities including paging, segmentation, allocation, and disk scheduling. (*Analyze*, *Evaluate BTL* 4, 5)
- 4. Understand I/O hardware/software mechanisms, security principles, and Unix/Linux system features. (*Understand*, *Apply BTL* 2, 3)
- 5. Describe the components and functioning of system software including language processors, macro processors, linkers, and loaders. (*Understand*, *Apply BTL 2*, 3)

UNIT - I: Fundamentals of Operating Systems and Process Management

Introduction to Operating Systems:Definition and Basics, Generations and Types of Operating Systems, OS Structure: Layered, Monolithic, Microkernel, OS Services, System Calls, System Boot, System Programs, Virtual Machines, Process Management: Process Concepts, Process States, Process Control Block, Context Switching, Threads and Multithreading, Process Scheduling: Scheduling Criteria and Scheduling Algorithms, Multiprocessor Scheduling: Types and Performance Evaluation, Process Synchronization and Deadlocks:Race Conditions, Critical Section, Mutual Exclusion, Peterson's Solution, Semaphores, Monitors Classic IP, C Problems: Reader-Writers, Dining Philosophers, Deadlocks: Definition, Characteristics, Prevention, Avoidance, Detection and Recovery

UNIT - II: Memory, File, and Storage Management

Memory Management:Logical vs. Physical Address Mapping, Contiguous Memory Allocation, Internal and External Fragmentation, Compaction, Paging and Page Tables, Segmentation, Virtual Memory: Demand Paging, Page Faults, Page Replacement Algorithms, Thrashing and Working Set Model, File System Management:File Concepts, Access Methods, File Types and Operations,

Directory Structure, File System Structure, Allocation Methods, Free-Space Management, Directory Implementation. Storage Management:Mass Storage: Disk Structure, RAID Levels, Disk Scheduling Algorithms, Swap Space Management, Stable Storage, Tertiary Storage Structure.

UNIT - III: I/O Systems, Security, and Unix/Linux Overview

I/O System Management:I/O Hardware: Devices, Device Controllers, Direct Memory Access, I/O Software: Interrupt Handlers, Device Drivers, Device-Independent I/O Software, SystemProtection and Security:Security Environment, Security Design Principles, User Authentication, Protection Mechanisms, Protection Domain, Access Control List, Unix/Linux Overview & Case Studies.

UNIT IV: System Software and Language Processing

Overview of System Software:Software and Software Hierarchy, Systems Programming and Machine Structure, Interfaces, Address Space, and Computer Languages, System Software Development and Recent Trends, Language Processors:Programming Languages and Language Processing, Symbol Tables and Data Structures for Language Processing, Search and Allocation Data Structures, Assemblers and Macro Processors:Elements of Assembly Language Programming, Design and Types of Assemblers, Macro Definitions, Expansion, Nested Macros, and Advanced Macro Features, Design of Macro Assemblers and Macro Processors, Linkers and Loaders:Concept of Linking and Relocation, Linking in MS-DOS, Dynamic Linking, Loading Schemes: Sequential, Direct, Absolute, Relocating, and Linking Loaders, Comparison of Linkers and Loaders

UNIT V: System Programming

Scanning and Parsing:Programming Language Grammars and Classification, Ambiguity in Grammatic Specification, Scanning, Parsing, Compilers and Interpreters:Compilation Process, Semantic Gap, Binding, and Scope Rules, Memory Allocation, Compilation of Expressions & Control Structures, Code Optimization, Overview of Interpreters and Debuggers, Operating System Command & Shell Basics:C Development Tools, Machine-Level Representation of Data and Programs, System-Level Programming and Concurrency:File I/O, Process Creation & Control (fork, exec), Pipes, Signals, and Basic Threading.

Reference Books:

- Real-Time Systems: Theory and Practice by Rajib Mall, Publisher: Pearson
- System Software: An Introduction to Systems Programming (3rd Edition) by Leland L. Beck & D. Manjula, Publisher: Pearson

Textbooks:

- *Operating System Concepts* (9th or 10th Edition) by Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne in publisher: Wiley
- *Operating Systems: A Concept-Based Approach* (3rd Edition) by D. M. Dhamdhere publisher: McGraw Hill

III B.Tech I Semester

		L	T	P	C
23A33503	Computer Vision and Image Processing (Professional Core)	3	0	0	3

Course Objectives:

- Introduce fundamental concepts of image processing and computer vision.
- Develop proficiency in applying algorithms for image analysis and interpretation.
- Explore techniques for feature extraction, object recognition, and scene understanding.
- Understand the integration of machine learning methods in computer vision applications.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- 1. Understand image formation, representation, and apply basic image processing and frequency domain techniques for image enhancement and restoration.
- 2. Apply edge detection, segmentation, morphological, and texture analysis techniques for extracting features from images.
- 3. Analyze 3D vision and motion using techniques like stereo vision, optical flow, and camera calibration for scene understanding and depth estimation.
- 4. Evaluate object recognition approaches and machine learning models including traditional and deep learning techniques used in computer vision.
- 5. Implement advanced computer vision applications such as image compression, face recognition, and medical image analysis using case studies.

UNIT I: Introduction to Computer Vision and Image Processing

Overview of Computer Vision and Image Processing: Definitions and scope, Historical development and applications, Image Formation and Representation: Image acquisition methods, Sampling and quantization, Color spaces and models, Fundamentals of Image Processing: Point operations (brightness and contrast adjustments), Histogram processing, Spatial filtering techniques Fourier Transform and Frequency Domain Processing: Discrete Fourier Transform (DFT), Filtering in the frequency domain, Image restoration concept.

UNIT II: Image Analysis Techniques

Edge Detection and Feature Extraction: Gradient operators (Sobel, Prewitt), Canny edge detector, Corner and interest point detection, Image Segmentation: Thresholding methods, Region-based segmentation, Clustering techniques (K-means, Mean-Shift), Morphological Image Processing: Erosion and dilation, Opening and closing operations, Applications in shape analysis, Texture Analysis, Statistical methods (co-occurrence matrices), Transform-based methods (Gabor filters), Applications in pattern recognition.

UNIT III: 3D Vision and Motion Analysis

Stereo Vision: Epipolar geometry, Disparity mapping, Depth estimation techniques, Structure from Motion (SfM): Feature tracking across frames, 3D reconstruction from motion, Applications in scene understanding, Optical Flow and Motion Analysis: Lucas-Kanade method, Horn-Schunck method, Motion segmentation, Camera Calibration and 3D Reconstruction: Intrinsic and extrinsic parameters, Calibration techniques, 3D point cloud generation

UNIT IV: Object Recognition and Machine Learning in Vision

Feature Descriptors and Matching: Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), Feature matching algorithms, Object Detection and Recognition: Template matching, Deformable part models, Convolutional Neural Networks (CNNs), Introduction to Machine Learning for Vision: Supervised and unsupervised learning, Support Vector Machines (SVMs), Decision trees and random forests, Deep Learning Architectures: Autoencoders, Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs)

UNIT V: Applications and Advanced Topics

Image Compression: Lossy and lossless compression techniques, Standards (e.g., JPEG, PNG), Morphological Image Processing: Dilation, erosion, opening, and closing operations., Applications in shape analysis, Case Studies: Face recognition systems., Automated visual inspection, Medical image analysis.

Reference Books

- 1. Forsyth, D. A., & Ponce, J. (2002). *Computer Vision: A Modern Approach*. Prentice Hall.
- 2. Shapiro, L. G., & Stockman, G. C. (2001). *Computer Vision*. Prentice Hall.

Textbooks:

- 1. Gonzalez, R. C., & Woods, R. E. (2008). *Digital Image Processing* (3rd ed.). Pearson Prentice Hall. Stony Brook University
- 2. Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.

- 1. Coursera: Introduction to Computer Vision and Image Processing. <u>LinkCoursera</u>
- 2. Stanford University: CS231n: Deep Learning for Computer Vision. Linkcs231n.stanford.edu
- 3. MIT OpenCourseWare: Introduction to Computer Vision. Link

III B.Tech I Semester

		L	T	P	C
23A30504a	DATA VISUALIZATION (Professional Elective-I)	3	0	0	3

Course Objectives:

- To understand the principles, techniques, and tools of data visualization.
- To develop the ability to transform data into visual insights using different types of charts and plots.
- To introduce the cognitive and perceptual foundations of effective data visualization.
- To apply tools and programming environments (like Python, Tableau, or Power BI) for creating interactive and dynamic visualizations.
- To analyze real-world datasets and effectively communicate data-driven findings visually.

Course Outcomes:

After completion of the course, students will be able to:

- CO1: Interpret different types of data and recognize the appropriate visualization methods. (Understand, Analyze)
- CO2: Design effective and interactive data visualizations using various tools. (Apply, Create)
- CO3: Apply visual encoding and perceptual principles in presenting complex data. (Apply, Evaluate)
- CO4: Analyze and visualize real-world data sets using Python libraries and dashboards. (Analyze, Evaluate)
- CO5: Create visual stories and dashboards for effective communication of insights. (Create, Apply)

UNIT I: Introduction to Data Visualization & Perception

Introduction to Data Visualization, Importance and Scope of Data Visualization, Data Types and Sources, Visual Perception: Pre-attentive Processing, Gestalt Principles, Data-Ink Ratio, Data Density, Lie Factor, Visualization Process and Design Principles, Tools Overview: Tableau, Power BI, Python Libraries

UNIT II: Visualization Techniques for Categorical & Quantitative Data

Charts for Categorical Data: Bar Charts, Pie Charts, Column Charts, Charts for Quantitative Data: Histograms, Line Charts, Boxplots, Scatter Plots, Bubble Charts, Heatmaps, Choosing the Right Chart Type, Best Practices in Labeling, Coloring, and Scaling.

UNIT III: Multidimensional, Temporal and Hierarchical Data Visualization

Visualizing Multivariate Data: Parallel Coordinates, Radar Charts, Time-Series Visualization: Time Plots, Animation over Time, Geographic Data Visualization: Maps, Choropleths, Hierarchical Data: Treemaps, Sunburst Charts, Network and Graph Visualization.

UNIT IV: Data Visualization Using Python and Dashboards

Introduction to Matplotlib, Seaborn, and Plotly, Creating Static and Interactive Charts, Pandas Visualization Capabilities, Dashboards with Dash, Streamlit, Power BI, Case Studies: Real-world Dataset Visualization.

UNIT V: Storytelling with Data and Ethical Visualization

Storytelling and Narrative Techniques in Visualization, Dashboards and Reporting, Misleading Visualizations and Bias, Ethical Principles in Data Visualization, Final Project: Create a Storytelling Dashboard with Real Data.

Textbooks:

- 1. Tamara Munzner, Visualization Analysis and Design, CRC Press, 2014.
- 2. Nathan Yau, Data Points: Visualization That Means Something, Wiley, 2013.

Reference Books:

- 1. Alberto Cairo, The Truthful Art: Data, Charts, and Maps for Communication, New Riders, 2016.
- 2. Cole Nussbaumer Knaflic, Storytelling with Data: A Data Visualization Guide for Business Professionals, Wiley, 2015.
- 3. Claus O. Wilke, Fundamentals of Data Visualization, O'Reilly, 2019.
- 4. Rohan Chopra, Hands-On Data Visualization with Bokeh, Packt Publishing, 2019.

- 1. NPTEL: Data Visualization IIT Madras
- 2. Coursera: Data Visualization with Python by IBM

III B.Tech I Semester

	SOFT COMPUTING	L	T	P	C
23A05503b	(Professional Elective-I)	3	0	0	3
	(F10lessional Elective-1)				

Course Objectives:

- Understand the concepts of soft computing techniques and how they differ from traditional AI techniques.
- Introduce the fundamentals of fuzzy logic and fuzzy systems.
- Familiarize with artificial neural networks and their architectures.
- Learn genetic algorithms and their role in optimization.
- Explore hybrid systems integrating fuzzy logic, neural networks, and genetic algorithms.

Course Outcomes:

After completion of the course, students will be able to:

- Understand the components and applications of soft computing.
- Apply fuzzy logic concepts to real-world problems.
- Build and train various neural network models.
- Implement genetic algorithms for problem-solving and optimization.
- Design hybrid systems using soft computing techniques.

UNIT I: Introduction to Soft Computing and Fuzzy Logic

Introduction to Soft Computing: Definition, Components, Differences with Hard Computing, Applications of Soft Computing, Fuzzy Logic: Crisp Sets vs Fuzzy Sets, Membership Functions, Fuzzy Set Operations, Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems: Mamdani and Sugeno Models, Defuzzification Techniques.

UNIT II: Artificial Neural Networks – I

Introduction to Neural Networks: Biological Neurons vs Artificial Neurons, Architecture of Neural Networks: Feedforward, Feedback, Learning Rules: Hebbian, Delta, Perceptron Learning Rule, Single Layer Perceptron and its Limitations, Multi-Layer Perceptron: Backpropagation Algorithm, Applications of Neural Networks

UNIT III: Artificial Neural Networks – II

Hopfield Networks and Associative Memories, Radial Basis Function Networks, Self-Organizing Maps (SOM), Recurrent Neural Networks (RNNs) – Basic Concepts, Convolutional Neural Networks (CNNs) – Overview and Applications, Practical Use Cases in Image and Pattern Recognition,

UNIT IV: Genetic Algorithms and Optimization

Introduction to Genetic Algorithms, GA Operators: Selection, Crossover, Mutation, Fitness Function and Evaluation, Schema Theorem, Elitism, Applications in Function Optimization, Scheduling, and Robotics, Introduction to Particle Swarm Optimization (PSO).

UNIT V: Hybrid Systems and Advanced Topics

Hybrid Systems: Neuro-Fuzzy Systems, Fuzzy-GA, GA-ANN, ANFIS: Architecture and Learning, Case Studies on Hybrid Systems, Introduction to Deep Learning in Soft Computing, Real-World Applications: Forecasting, Control Systems, Medical Diagnosis, Image Processing.

Textbooks:

- 1. S. N. Sivanandam, S. N. Deepa, "Principles of Soft Computing", Wiley India, 3rd Edition
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Wiley, 4th Edition
- 3. S. Rajasekaran and G. A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications", PHI

Reference Books:

- 1. Laurene Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms and Applications", Pearson
- 2. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson
- 3. Simon Haykin, "Neural Networks and Learning Machines", Pearson, 3rd Edition
- 4. Bart Kosko, "Neural Networks and Fuzzy Systems", Prentice Hall

- 1. NPTEL Soft Computing by Prof. S. Sengupta (IIT Kharagpur)
- 2. Coursera Neural Networks and Deep Learning (Andrew Ng)

III B.Tech I Semester

Γ			L	T	P	C
	23A30504c	Exploratory Data Analysis with Python (Professional Elective-I)	3	0	0	3

Course Objectives:

- To introduce the principles and practices of Exploratory Data Analysis (EDA) using Python.
- To teach techniques for data cleaning, preprocessing, transformation, and visualization.
- To apply statistical techniques and visual methods to discover patterns and relationships.
- To gain experience using popular Python libraries such as NumPy, Pandas, Matplotlib, and Seaborn.
- To prepare datasets for further machine learning and predictive modeling.

Course Outcomes: After completion of the course, students will be able to:

- Understand and apply key concepts of EDA and data preprocessing. (Cognitive Level: Understand, Apply)
- Perform exploratory analysis using Python libraries and interpret results. (Cognitive Level: Apply, Analyze)
- Handle missing data, outliers, and categorical features effectively. (Cognitive Level: Apply)
- Create meaningful visualizations to support data-driven insights. (Cognitive Level: Analyze, Evaluate)
- Use EDA as a foundation for data science workflows. (Cognitive Level: Apply, Create)

UNIT I – Introduction to EDA and Python Environment

Introduction to Data Science and EDA, Importance of EDA in Data Science Life Cycle, Setting up Python Environment: Jupyter, Anaconda, VS Code, Introduction to NumPy and Pandas: Arrays, Series, DataFrames, Data loading, viewing, basic operations (info, describe, shape)

UNIT II – Data Wrangling and Preprocessing

Handling Missing Data (mean, median, drop, interpolation), Dealing with Duplicates, Outliers, and Anomalies, Encoding Categorical Variables (Label, One-hot), Data Transformation: Scaling, Normalization, Binning, Data Types Conversion and Data Type Casting.

UNIT III – Univariate and Bivariate Analysis

Measures of Central Tendency and Dispersion, Distribution Plots: Histograms, Boxplots, KDE, Bar Charts, Count Plots, Pie Charts, Bivariate Analysis: Scatter Plots, Pair Plots, Heatmaps, Correlation and Covariance Analysis

UNIT IV – Data Visualization Techniques

Visualization with Matplotlib and Seaborn, Customizing Plots: Titles, Legends, Labels, Themes, Advanced Visuals: Violin Plots, Strip Plots, Swarm Plots, Multivariate Visualization and Subplots, Plotly and Interactive Visualizations (basic overview)

UNIT V – EDA Case Studies and Real-Time Datasets

Step-by-step EDA on Sample Datasets (Titanic, Iris, Sales, etc.), Outlier Detection Techniques, Feature Engineering Techniques in EDA, EDA Report Generation using Python Notebooks, Preparing Data for Machine Learning Models

Textbooks:

1. Jake VanderPlas, Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly, 2016.

2. Wes McKinney, Python for Data Analysis, 2nd Edition, O'Reilly, 2018.

Reference Books:

- 1. Joel Grus, Data Science from Scratch, O'Reilly, 2019.
- 2. Aurelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow, 2nd Edition, O'Reilly, 2019.
- 3. Allen B. Downey, Think Stats: Probability and Statistics for Programmers, O'Reilly, 2014.

- 1. NPTEL Course Data Science for Engineers
- 2. Coursera Applied Data Science with Python Specialization (University of Michigan)

III B.Tech I Semester

		L	T	P	C
23A33504	COMPUTATIONAL INTELLIGENCE (Professional Elective-I)	3	0	0	3

Course Objectives:

- Understand the concepts and foundations of computational intelligence.
- Study neural networks, fuzzy logic systems, and evolutionary algorithms.
- Explore hybrid systems and their applications.
- Apply computational intelligence techniques to real-world problem-solving.
- Analyze the effectiveness of various computational intelligence approaches.

Course Outcomes: After completion of the course, students will be able to:

- Describe and differentiate neural networks, fuzzy logic, and evolutionary computation. (Understand)
- Apply neural and fuzzy systems for real-time decision-making. (Apply)
- Analyze complex problems using soft computing tools. (Analyze)
- Develop hybrid intelligent systems. (Create)
- Evaluate and compare the performance of CI-based systems. (Evaluate)

UNIT I: Introduction to Computational Intelligence and Artificial Neural Networks

Definition and Scope of Computational Intelligence (CI), Components of CI: Neural Networks, Fuzzy Logic, Evolutionary Computation, Biological Neuron vs. Artificial Neuron, McCulloch-Pitts Model, Perceptron, Adaline and Madaline, Multilayer Feedforward Networks, Backpropagation Algorithm, Applications of ANN in Pattern Recognition and Classification.

UNIT II: Fuzzy Logic and Fuzzy Systems

Introduction to Fuzzy Logic and Fuzzy Sets, Membership Functions, Fuzzy Set Operations, Fuzzy Rules and Inference Systems, Fuzzification and Defuzzification, Fuzzy Control Systems, Fuzzy Reasoning and Approximate Reasoning

UNIT III: Evolutionary Computation Techniques

Basics of Evolutionary Algorithms (EA), Genetic Algorithms (GA): Operators, Encoding, Fitness Function, Selection, Crossover and Mutation, Convergence Criteria, Genetic Programming (GP), Differential Evolution (DE), Applications of GA and GP

UNIT IV: Swarm Intelligence and Hybrid Systems

Swarm Intelligence: Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Behavior of Swarms and Collective Intelligence, Comparison of Evolutionary Algorithms and Swarm Techniques, Hybrid Systems: Neuro-Fuzzy, Fuzzy-GA, ANN-GA Systems, Case Studies in Hybrid Systems

UNIT V: Applications of Computational Intelligence

CI in Image and Signal Processing, CI for Optimization Problems and Robotics, CI in Biomedical

Engineering and Finance, Intelligent Agents and Decision-Making Systems, Real-time Applications and Emerging Trends in CI.

Textbooks:

- 1. S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms: Synthesis and Applications, PHI Learning.
- 2. Timothy J. Ross, Fuzzy Logic with Engineering Applications, Wiley India.

Reference Books:

- 1. S.N. Sivanandam, S. N. Deepa, Principles of Soft Computing, Wiley India.
- 2. Simon Haykin, Neural Networks and Learning Machines, Pearson.
- 3. James Kennedy and Russell C. Eberhart, Swarm Intelligence, Morgan Kaufmann.
- 4. Andries P. Engelbrecht, Computational Intelligence: An Introduction, Wiley.

- 1. NPTEL Computational Intelligence
- 2. Coursera Computational Intelligence
- 3. YouTube: IIT Lectures on Soft Computing and CI

III B.Tech I Semester

		L	T	P	C
23A33505	COMPUTER VISION & MACHINE LEARNING LAB (Professional Core)	0	0	3	1.5

Course Objectives:

- To impart practical knowledge of computer vision concepts using OpenCV and image processing libraries.
- To implement core machine learning algorithms and evaluate model performance.
- To work with real-world datasets for classification, regression, and image processing tasks.
- To train, test, and validate models using Python, TensorFlow, and Scikit-learn.
- To understand the integration of ML models in vision applications.

Course Outcomes:

After successful completion of this lab, students will be able to:

- Apply computer vision techniques to solve real-time image processing problems. (Apply -L3)
- Train and evaluate machine learning models for classification and regression tasks. (Analyze -L4)
- Design and test feature extraction techniques from images. (Create L6)
- Use OpenCV, Scikit-learn, TensorFlow/PyTorch for practical implementations. (Apply L3)
- Integrate vision-based features with ML algorithms for end-to-end solutions. (Evaluate L5)

List of Experiments (12 Total)

- 1. Image preprocessing techniques: resizing, filtering, thresholding using OpenCV
- 2. Edge detection using Sobel, Canny, and Laplacian operators
- 3. Object detection using contour detection and bounding boxes
- 4. Feature extraction using HOG, SIFT, and ORB
- 5. Implement face detection using Haar cascades or DNN models
- 6. Train a machine learning model (SVM / KNN) for image classification
- 7. Build and evaluate a decision tree classifier using scikit-learn
- 8. Implement a logistic regression model for binary classification on numerical dataset
- 9. Apply PCA for feature reduction and visualization
- 10. Design a simple neural network using TensorFlow/Keras for image classification
- 11. Train and evaluate a CNN model for digit recognition using MNIST dataset
- 12. Real-time emotion recognition using webcam input and pre-trained model integration

Textbooks:

- 1. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press.
- 2. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly.
- 3. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer.

Reference Books:

- 1. Adrian Rosebrock, Practical Python and OpenCV (PyImageSearch).
- 2. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press.
- 3. Bishop C. M., Pattern Recognition and Machine Learning, Springer.

- 1. https://opencv.org
- 2. https://www.tensorflow.org/tutorials
- 3. https://www.kaggle.com/learn/intro-to-machine-learning
- 4. https://www.pyimagesearch.com
- 5. NPTEL Course on Deep Learning

III B.Tech I Semester

		L	T	P	C
23A33506	AI & SYSTEM PROGRAMMING LAB (Professional Core)	0	0	3	1.5

Course Objectives:

- To provide practical exposure to foundational AI algorithms and system programming.
- To develop skills to write intelligent systems and low-level programs.
- To integrate concepts of AI and system programming for automation and optimization.

Course Outcomes:

After successful completion of the lab, students will be able to:

- Implement search algorithms and logic programming using AI tools.
- Construct assemblers, macro processors, and shell scripts.
- Develop system utilities using C and integrate them with AI tools.
- Demonstrate real-time intelligent system automation using scripting and AI logic.

List of Experiments (12 Total)

- 1. Write simple programs in Prolog for facts, rules, and queries.
- 2. Develop a Prolog-based expert system for medical diagnosis or animal identification.
- 3. Implement Depth-First Search (DFS) and Breadth-First Search (BFS) in Python.
- 4. Implement A* Search Algorithm using heuristics in Python.
- 5. Implement the Minimax algorithm for a simple game (e.g., Tic Tac Toe).
- 6. Design and implement a two-pass assembler in C.
- 7. Implement a Macro Processor using C for assembly language programs.
- 8. Develop a simple Linux Shell (command interpreter) using C.
- 9. Write shell scripts for file operations, process creation, and monitoring.
- 10. Demonstrate inter-process communication using pipes and signals in Linux.
- 11. Integrate AI logic (search/expert system) into a shell script or system utility for task automation.
- 12. Develop an AI-powered system utility (e.g., Intelligent File Manager, AI Bot for CLI commands).

Lab Software Requirements:

- Languages: Python, Prolog, C
- Tools: GCC, SWI-Prolog, Linux (Ubuntu/WSL), Shell, Lex/Yacc (optional)
- IDEs: Code::Blocks / VS Code / Geany / Terminal-based compilation

III B.Tech I Semester

		L	Т	P	C
23A05505	FULL STACK DEVELOPMENT-II (Skill Enhancement course)	0	1	2	2

Course Objectives: The main objectives of the course are to

- Make use of Modern- day JavaScript with ES6 standards for designing Dynamic web pages
- Building robust & responsive User Interfaces using popular JavaScript library '**React.js**'. Building robust backend APIs using '**Express. js**'
- Establishing the connection between frontend (React) User interfaces and backend APIs (Express) with Data Bases(My SQL)
- Familiarize students with GitHub for remote repository hosting and collaborative development.

Course Outcomes:

- CO1: Building fast and interactive UIs
- CO2: Applying Declarative approach for developing web apps
- CO3: Understanding ES6 features to embrace modern JavaScript
- CO4: Building reliable APIs with Express. Js
- CO5: Create and manage Git repositories, track changes, and push code to GitHub.

Experiments covering the Topics:

- Introduction to DOM (Document Object Model), Ecma Script (ES6) standards and features like Arrow functions, Spread operator, Rest operator, Type coercion, Type hoisting, String literals, Array and Object Destructuring.
- Basics of React. js like React Components, JSX, Conditional rendering Differences between Real DOM and Virtual DOM.
- Important React.js concepts like React hooks, Props, React forms, Fetch API, Iterative rendering using JavaScript map() function.
- JavaScript runtime environment node. js and its uses, Express. js and Routing, Micro-Services architecture and MVC architecture, database connectivity using (My SQL)
- Introduction to My SQL, setting up MySQL and configuring, Databases, My SQL queries, subqueries, creating My SQL driver for database connectivity to Express. js server.
- Introduction to Git and GitHub and upload project& team collaboration

Sample Experiments:

1. Introduction to Modern JavaScript and DOM

- **a.** Write a JavaScript program to link JavaScript file with the HTML page
- **b.** Write a JavaScript program to select the elements in HTML page using selectors
- **c.** Write a JavaScript program to implement the event listeners
- **d.** Write a JavaScript program to handle the click events for the HTML button elements
- **e.** Write a JavaScript program to With three types of functions
 - **i.** Function declaration
 - **ii.** Function definition
 - iii. Arrow functions

2. Basics of React. js

- a. Write a React program to implement a counter button using react class components
- **b.** Write a React program to implement a counter button using react functional components
- c. Write a React program to handle the button click events in functional component
- **d.** Write a React program to conditionally render a component in the browser
- **e.** Write a React program to display text using String literals

3. Important concepts of React. js

- a. Write a React program to implement a counter button using React use State hook
- **b.** Write a React program to fetch the data from an API using React use Effect hook
- **c.** Write a React program with two react components sharing data using Props.
- **d.** Write a React program to implement the forms in react
- **e.** Write a React program to implement the iterative rendering using map() function.

4. Introduction to Git and GitHub

a. **Setup**

- o Install Git on local machine.
- o Configure Git (user name, email).
- Create GitHub account and generate a personal access token.

b. Basic Git Workflow

- o Create a local repository using git init
- o Create and add files \rightarrow git add.
- o Commit files → git commit -m "Initial commit"
- o Connect to GitHub remote → git remote add origin <repo_url>
- o Push to GitHub → git push -u origin main

c. Branching and Collaboration

- o Create a branch → git checkout -b feature1
- o Merge branch to main → git merge feature1
- o Resolve merge conflicts (guided)

5. Upload React Project to GitHub

- o Create a new React app using npx create-react-app myapp
- o Initialize a git repo and push to GitHub
- o Use .gitignore to exclude node modules
- o Create multiple branches: feature/navbar, feature/form
- Practice merge and pull requests (can use GitHub GUI)

6. Introduction to Node. js and Express. js

- **a.** Write a program to implement the 'hello world' message in the route through the browser using Express
- **b.** Write a program to develop a small website with multiple routes using Express. js
- **c.** Write a program to print the 'hello world' in the browser console using Express. js
- **d.** Write a program to implement the CRUD operations using Express. js
- **e.** Write a program to establish the connection between API and Database using Express My SOL driver

7. Introduction to My SQL

a. Write a program to create a Database and table inside that database using My SQL Command line client

b. Write a My SQL queries to create table, and insert the data, update the data in the table

- **c.** Write a My SQL queries to implement the subqueries in the My SQL command line client
- **d.** Write a My SQL program to create the script files in the My SQL workbench
- **e.** Write a My SQL program to create a database directory in Project and initialize a database. sql file to integrate the database into API

8. Team Collaboration Using GitHub

- o Form groups of 2–3 students
- o Create a shared GitHub repo
- Assign tasks and work in branches
- o Use Issues, Pull Requests, and Code Reviews
- Document code with README.md

Textbooks:

- 1. Web Design with HTML, CSS, JavaScript and JQuery Set Book by Jon Duckett Professional JavaScript for Web Developers Book by Nicholas C. Zakas
- 2. John Dean, Web Programming with HTML5, CSS and JavaScript, Jones & Bartlett Learning, 2019.
- 3. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly.
- 4. Learning PHP, MySQL, JavaScript, CSS & HTML5: A Step-by-Step Guide to Creating Dynamic Websites by Robin Nixon
- AZAT MARDAN, Full Stack Java Script: Learn Back bone. js, Node.jsand Mongo DB.2015

Reference Books:

- 1. Full-Stack JavaScript Development by Eric Bush.
- 2. Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013.
- 3. Tomasz Dyl "KamilPrzeorski , MaciejCzarnecki, Mastering Full Stack React Web Development 2017

- 1. https://ict.iitk.ac.in/product/full-stack-developer-html5-css3-js-bootstrap-php-4/
- 2. https://www.w3schools.com/html
- 3. https://www.w3schools.com/css
- 4. https://www.w3schools.com/js/
- 5. https://www.w3schools.com/nodejs
- 6. https://www.w3schools.com/typescript
- 7. https://docs.github.com/
- 8. https://education.github.com/git-cheat-sheet-education.pdf

III B.Tech - I semester

L T P C 2 0 0 1

23A03508 TINKERING LAB

The aim of tinkering lab for engineering students is to provide a hands-on learning environment where students can explore, experiment, and innovate by building and testing prototypes. These labs are designed to demonstrate practical skills that complement theoretical knowledge.

Cticui	Miowicage.								
	Course objectives: The objectives of the course are to								
1	1 Encourage Innovation and Creativity								
2	Provide Hands-on Learning and Impart Skill Development								
3	Foster Collaboration and Teamwork								
4	Enable Interdisciplinary Learning, Prepare for Industry and								
	Entrepreneurship								
5	Impart Problem-Solving mind-set								

These labs bridge the gap between academia and industry, providing students with the practical experience. Some students may also develop entrepreneurial skills, potentially leading to start-ups or innovation-driven careers. Tinkering labs aim to cultivate the next generation of engineers by giving them the tools, space, and mind-set to experiment, innovate, and solve real-world challenges.

List of experiments:

- 1) Make your own parallel and series circuits using breadboard for any application of your choice.
- 2) Demonstrate a traffic light circuit using breadboard.
- 3) Build and demonstrate automatic Street Light using LDR.
- 4) Simulate the Arduino LED blinking activity in Tinkercad.
- 5) Build and demonstrate an Arduino LED blinking activity using Arduino IDE.
- 6) Interfacing IR Sensor and Servo Motor with Arduino.
- 7) Blink LED using ESP32.
- 8) LDR Interfacing with ESP32.
- 9) Control an LED using Mobile App.
- 10) Design and 3D print a Walking Robot
- 11) Design and 3D Print a Rocket.
- 12) Build a live soil moisture monitoring project, and monitor soil moisture levels of a remote plan in your computer dashboard.
- 13) Demonstrate all the steps in design thinking to redesign a motor bike.

Students need to refer to the following links:

Course Outcomes: The students will be able to experiment, innovate, and solve real-world challenges.

- 1) https://aim.gov.in/pdf/equipment-manual-pdf.pdf
- 2) https://atl.aim.gov.in/ATL-Equipment-Manual/
- 3) https://aim.gov.in/pdf/Level-1.pdf
- 4) https://aim.gov.in/pdf/Level-2.pdf

5) https://aim.gov.in/pdf/Level-3.pdf

6) III B.Tech II Semester

III B.Tech II Semester

		L	T	P	C
23A30604b	Cloud Computing for AI (Professional Core)	3	0	0	3

Course Objectives:

- To introduce the concepts, models, and services of cloud computing and its role in AI.
- To explore the architecture and deployment of AI applications on cloud platforms.
- To equip students with skills in using cloud-based tools and services for AI/ML workloads.
- To understand data storage, processing, and security in cloud for AI tasks.
- To apply cloud computing principles to real-world AI-based solutions.

Course Outcomes:

After completion of this course, students will be able to:

- Explain cloud computing architecture, services, and deployment models.
- Utilize cloud platforms (AWS, GCP, Azure) for training and deploying AI models.
- Handle large-scale data storage and processing in the cloud environment.
- Integrate AI workflows using serverless and container-based architectures.
- Analyze challenges in security, cost, scalability, and performance of cloud-based AI systems.

UNIT I: Introduction to Cloud Computing and AI Integration

Basics of Cloud Computing: Characteristics, Models, and Services, Cloud Service Models: IaaS, PaaS, SaaS, Deployment Models: Public, Private, Hybrid, Community, AI and Cloud Convergence: Benefits and Challenges, Use Cases of AI in Cloud: NLP, Vision, Analytics, Overview of Cloud Providers for AI: AWS, Azure, GCP.

UNIT II: Storage, Computing, and Data Processing in the Cloud

Cloud Storage Services: S3, Blob, BigQuery, Virtualization and Elastic Computing, Distributed Computing with Hadoop and Spark, Data Ingestion and Processing Pipelines, Data Lakes and Warehousing in the Cloud, Cost Optimization for Storage and Compute Resources.

UNIT III: Cloud-based Machine Learning and Deep Learning

ML Services on AWS (SageMaker), Azure ML, GCP Vertex AI, Training and Deploying Models on Cloud, AutoML and Custom ML Model Workflows, GPUs/TPUs for Model Training, Experiment Tracking and Model Evaluation, Integration of Notebooks (Jupyter, Colab) with Cloud Storage.

UNIT IV: Advanced Cloud Concepts for AI Applications

Containers and Docker for AI Applications, Kubernetes and Cloud-native AI Workflows, Serverless Computing: AWS Lambda, Azure Functions, CI/CD Pipelines for AI Models in Cloud, Scaling AI Applications using Load Balancers and Auto-Scaling. Monitoring and Logging in Cloud for AI Workflows.

UNIT V: Security, Ethics, and Case Studies in Cloud AI

Security and Privacy in Cloud-based AI, Identity and Access Management (IAM) in Cloud, Cost Management and Billing for AI Services, Ethical Issues and Fairness in Cloud AI, Case Study: AI in Healthcare Cloud Solutions, Case Study: Real-Time Analytics in Financial Cloud Services.

Textbooks:

- 1. Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi, Mastering Cloud Computing, McGraw-Hill.
- 2. Judith Hurwitz et al., Cloud Computing for Dummies, Wiley.
- 3. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly.

Reference Books:

- 1. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, Distributed and Cloud Computing, Morgan Kaufmann.
- 2. Tomasz Kajdanowicz et al., Practical Cloud AI, Springer.
- 3. Mark Wilkins, AI and Machine Learning for Coders in Cloud, Packt Publishing.

- AWS Cloud Practitioner & Machine Learning Path AWS Training
- Google Cloud AI and ML Specialization Coursera
- Microsoft Azure AI Engineer Associate Learn Portal
- IBM Cloud and AI Learning Cognitive Class
- Cloud Computing and Distributed Systems (CLOUDS) Lab University of Melbourne

III B.Tech II Semester

		L	Т	P	C
23A33601	Big Data Analytics & AI Applications (Professional Core)	3	0	0	3

Course Objectives:

- To introduce the fundamentals of big data and its role in AI-driven applications.
- To explore big data tools and technologies such as Hadoop, Spark, and NoSQL databases.
- To enable students to build scalable AI pipelines for data analytics.
- To apply AI/ML algorithms for real-time and batch processing environments.
- To demonstrate use cases of big data in domains like healthcare, finance, and IoT using AI.

Course Outcomes:

After completion of the course, students will be able to:

- Understand the architecture and ecosystem of big data processing.
- Analyze and manage large-scale datasets using Hadoop and Spark.
- Apply AI/ML techniques to extract insights from big data.
- Design and implement scalable data pipelines using distributed frameworks.
- Solve real-world domain problems with AI-powered big data solutions.

UNIT I: Introduction to Big Data and Analytics Ecosystem

Definition and Characteristics of Big Data – Volume, Velocity, Variety, Veracity, Value, Types of Analytics: Descriptive, Diagnostic, Predictive, Prescriptive, Big Data Challenges and Opportunities, Hadoop Ecosystem Overview: HDFS, MapReduce, YARN, NoSQL Databases: Key-Value, Columnar, Document, Graph Models, Data Lake vs. Data Warehouse.

UNIT II: Big Data Tools and Frameworks

Apache Spark Architecture and RDDs, Spark SQL, DataFrames, and Datasets, Spark Streaming for Real-Time Analytics, Kafka for Data Ingestion and Message Queues, Hive, Pig, and Impala for Big Data Querying, Comparative Analysis of Hadoop vs. Spark.

UNIT III: Machine Learning on Big Data

Introduction to MLlib and Scikit-learn, Data Preprocessing for Big Data ML Pipelines, Supervised Learning: Classification and Regression on Large Datasets, Unsupervised Learning: Clustering and Dimensionality Reduction, Model Evaluation and Validation Techniques, Distributed Training and Optimization Techniques.

UNIT IV: AI Applications on Big Data

Predictive Maintenance using Big Data & AI, Fraud Detection in Banking with Machine Learning, AI in Healthcare: Diagnosis, Genomics, Patient Monitoring, Retail and E-commerce Analytics, AI for Smart Cities and IoT Sensor Data Analysis, Evaluation of Real-Time AI Applications on Streaming Data.

UNIT V: Advanced Topics and Case Studies

Deep Learning on Big Data using TensorFlow on Spark, Explainable AI (XAI) in Big Data Environments, Ethical Issues and Data Governance in Big Data AI, Edge Computing and AI for Low Latency Applications, Case Study 1: AI-Powered Big Data in Healthcare, Case Study 2: Big Data AI Solution in Smart Manufacturing.

Textbooks:

- Big Data: Principles and Paradigms by Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi – Wiley
- 2. Learning Spark: Lightning-Fast Big Data Analysis by Jules S. Damji et al. O'Reilly
- 3. Data Science and Big Data Analytics by EMC Education Services Wiley

Reference Books:

- 1. Designing Data-Intensive Applications by Martin Kleppmann O'Reilly
- 2. Machine Learning with Spark by Rajdeep Dua, Tathagata Das Packt Publishing
- 3. Streaming Systems by Tyler Akidau O'Reilly Media
- 4. Artificial Intelligence for Big Data by Anand Deshpande Packt

- https://www.coursera.org/specializations/big-data Coursera Big Data Specialization
- https://spark.apache.org/docs/latest/ Apache Spark Documentation
- https://www.edx.org/course/big-data-analysis-with-python edX
- https://www.udacity.com/course/ai-for-business-leaders--nd088 Udacity AI for Business
- https://www.kaggle.com/learn/intro-to-machine-learning Kaggle ML Tutorials
- https://data-flair.training/blogs/apache-spark-tutorial/ Spark Tutorials

III B.Tech II Semester

		L	T	P	C
23A33602	Full Stack AI Development (Professional Core)	3	0	0	3

Course Objectives:

- To equip students with knowledge and skills for building end-to-end AI-powered web applications.
- To provide hands-on experience in integrating machine learning models with frontend and backend technologies.
- To teach model deployment, version control, and MLOps best practices.
- To expose students to full stack frameworks and cloud-based deployment platforms.
- To prepare students for real-world AI applications in production settings.

Course Outcomes:

Upon completion of this course, the student will be able to:

- Understand and apply full stack development principles in the context of AI solutions.
- Build and serve machine learning models via RESTful APIs.
- Design frontend interfaces for interaction with AI models.
- Deploy AI applications using modern DevOps tools and cloud platforms.
- Manage datasets, model versioning, and workflows in production-grade systems.

UNIT I: Introduction to Full Stack AI Development

Overview of Full Stack Development in AI Context, Layers: Frontend, Backend, ML Layer, and Deployment Layer, Tools and Technology Stack (React, Node.js, Flask, Django, FastAPI, TensorFlow, PvTorch, MongoDB, PostgreSQL), Understanding Model Lifecycle and ML Ops

UNIT II: Backend Development and API Integration

Introduction to Flask / FastAPI for model serving, RESTful API design and documentation (Swagger/OpenAPI), Connecting AI/ML models to APIs, Authentication, request handling, and session management, Error handling and response structuring

UNIT III: Frontend Development for AI Interfaces

Overview of frontend frameworks (React/Angular/Vue), Creating dynamic forms and dashboards for AI input/output, Data visualization using Chart.js, D3.js, Connecting frontend to API endpoints, Responsive design for AI application UX

UNIT IV: Model Deployment and MLOps

Basics of CI/CD pipelines for AI models, Using Docker for containerization, Deployment on cloud platforms (Heroku, AWS, GCP), Introduction to MLflow, DVC, and model versioning, Logging, monitoring, and performance metrics

UNIT V: Capstone Project and Case Studies

Full Stack AI Project Planning & Implementation, Use cases: Chatbot, Recommendation System, Image Classification App, NLP Web App, Industry-oriented workflows and best practices, Ethical considerations and data governance in AI applications

Textbooks:

- 1. **"Full Stack Deep Learning"** by Hamel Husain et al. *(online version available at fullstackdeeplearning.com)*
- 2. "Building Machine Learning Powered Applications" by Emmanuel Ameisen, O'Reilly.
- 3. "Flask Web Development" by Miguel Grinberg.

Reference Books:

- 1. "Machine Learning Engineering" by Andriy Burkov.
- 2. "Designing Data-Intensive Applications" by Martin Kleppmann.
- 3. "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron.

Online Resources:

- Full Stack Deep Learning Course
- FastAPI Documentation
- Flask Mega-Tutorial

III B.Tech II Semester

		L	Т	P	C
23A33603	Graph Neural Networks (Professional Elective-II)	3	0	0	3

Course Objectives:

- To introduce the fundamentals of graph theory and graph-structured data.
- To explore the concepts of neural networks extended to non-Euclidean domains.
- To understand architectures and algorithms behind various types of GNNs.
- To apply GNN models in real-world applications such as recommendation, social networks, and bioinformatics.
- To enable students to build and evaluate GNN models using frameworks like PyTorch Geometric and DGL.

Course Outcomes:

- Upon completion of the course, students will be able to:
- Understand the basics of graph structures and their significance in machine learning.
- Learn and implement different types of GNN architectures.
- Apply GNNs to real-world structured data problems.
- Use modern libraries and tools to train and evaluate GNNs.
- Analyze the effectiveness and limitations of GNNs in different domains.

UNIT I: Fundamentals of Graph Theory and Machine Learning on Graphs

Introduction to Graphs: Nodes, Edges, Adjacency Matrix, Types of Graphs: Directed, Undirected, Weighted, Bipartite, Graph Traversal Algorithms (BFS, DFS), Graph Representations for ML (Adjacency List, Matrix, Laplacian), Node, Edge, and Graph-level Prediction Problems, Motivation and Challenges for Learning on Graphs.

UNIT II: Spectral and Spatial Methods for Graph Learning

Spectral Graph Theory Basics, Graph Convolution via Spectral Methods, Chebyshev and First-order Approximations, Spatial Graph Convolutions, Comparison of Spectral vs Spatial GNNs, Graph Laplacian and Eigenvalue Properties.

UNIT III: Graph Neural Network Architectures

Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), GraphSAGE: Sampling and Aggregation, Graph Isomorphism Networks (GIN), Message Passing Neural Networks (MPNNs), Inductive vs Transductive GNN Learning.

UNIT IV: Applications of GNNs

Node Classification (e.g., Cora, Citeseer), Link Prediction (e.g., Recommender Systems), Graph Classification (e.g., Molecule Property Prediction), Traffic Forecasting and Social Network Modeling, GNNs in Healthcare and Bioinformatics, Explainability and Interpretability in GNNs.

UNIT V: Implementation, Optimization, and Recent Advances

Overview of PyTorch Geometric and DGL, Data Loading and Preprocessing for Graph Datasets, Model Training, Loss Functions, and Evaluation Metrics, Hyperparameter Tuning in GNNs, Recent Research Trends and Architectures (e.g., Heterogeneous GNNs, Graph Transformers), Challenges and Future Directions in GNNs.

Textbooks:

1. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu, A Comprehensive Survey on Graph Neural Networks, IEEE Transactions on Neural Networks and Learning Systems, 2021.

- 2. Yao Ma, Jiliang Tang, Deep Learning on Graphs, Cambridge University Press, 2021.
- 3. William L. Hamilton, Graph Representation Learning, Morgan & Claypool Publishers, 2020.

Reference Books:

- 1. Barrett, Jure Leskovec, Mining of Massive Datasets, Cambridge University Press.
- 2. Thomas Kipf, GCN and related papers and tutorials (arXiv).
- 3. Petar Veličković, Graph Attention Networks (original paper and slides).
- 4. Michael Bronstein et al., Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges (arXiv preprint).

- 1. https://pytorch-geometric.readthedocs.io/ PyTorch Geometric Docs
- 2. https://cs.stanford.edu/people/jure/ Stanford GNN Projects
- 3. https://www.coursera.org/learn/graph-neural-networks Coursera GNN Course by Stanford

III B.Tech II Semester

		L	T	P	C
23A32603	RECOMMENDER SYSTEMS (Professional Elective-II)	3	0	0	3

Course Objectives:

- To provide students with basic concepts and its application in various domain
- To make the students understand different techniques that a data scientist needs to know for analysing big data
- To design and build a complete machine learning solution in many application domains.

Course Outcomes: After completion of the course, students will be able to

- Aware of various issues related to Personalization and Recommendations.
- Design and implement a set of well-known Recommender System approaches used in E commerce and Tourism industry.
- Develop new Recommender Systems for a number of domains especially, Education, Health-care.

UNIT-I An Introduction to Recommender Systems, Neighborhood-Based Collaborative Filtering Lecture 8Hrs

Introduction, Goals of Recommender Systems, Basic Models of Recommender Systems, Domain Specific Challenges in Recommender Systems. Advanced Topics and Applications. Introduction, Key Properties of Ratings Matrices, Predicting Ratings with Neighborhood- Neighborhood-Based Collaborative Filtering: Based Methods, Clustering and Neighborhood-Based Methods, Dimensionality Reduction and Neighborhood Methods, Graph Models for Neighborhood-Based Methods, A Regression Modelling View of Neighborhood Methods.

UNIT-II Model-Based Collaborative Filtering, Content-Based Recommender Systems Lecture 9Hrs Introduction, Decision and Regression Trees, Rule-Based Collaborative Filtering, Naive Bayes Collaborative Filtering, Using an Arbitrary Classification Model as a Black-Box, Latent Factor Models, Integrating Factorization and Neighborhood Models. Content-Based Recommender Systems: Introduction, Basic Components of Content-Based Systems, Preprocessing and Feature Extraction, Learning User Profiles and Filtering, Content-Based Versus Collaborative Recommendations, Using Content-Based Models for Collaborative Filtering, Summary.

UNIT-III Knowledge-Based Recommender Systems, Ensemble Based and Hybrid Recommender Systems

Lecture 9Hrs

Introduction, Constraint-Based Recommender Systems, Case-Based Recommenders, Persistent Personalization in Knowledge-Based Systems, Summary. Introduction, Ensemble Methods from the Classification Perspective, Weighted Hybrids, Switching Hybrids, Cascade Hybrids, Feature Augmentation Hybrids, Meta-Level Hybrids, Feature Combination Hybrids, Summary.

UNIT-IV Evaluating Recommender Systems, Context-Sensitive Recommender SystemsLecture 8Hrs

Introduction, Evaluation Paradigms, General Goals of Evaluation Design, Design Issues in Offline Recommender Evaluation, Accuracy Metrics in Offline Evaluation, Limitations of Evaluation Measures, Limitations of Evaluation Measures. Introduction, The Multidimensional Approach, Contextual Pre-filtering: A Reduction-Based Approach, Contextual Pre-filtering: A Reduction-Based Approach, Contextual Modelling.

UNIT-V Time- and Location-Sensitive Recommender Systems 8Hrs

Lecture

Introduction, Temporal Collaborative Filtering, Discrete Temporal Models, Location-Aware Recommender Systems, Location-Aware Recommender Systems Location-Aware Recommender Systems, Summary.

Textbooks:

1. Charu C. Aggarwal, "Recommender Systems", Springer, 2016.

Reference Books:

- 1. Francesco Ricci, LiorRokach, "Recommender Systems Handbook", 2nd ed., Springer, 2015 Edition **Online Learning Resources:**
- 1. Recommendation System -Understanding The Basic Concepts (analyticsvidhya.com)
- 2. Recommender Systems | Coursera

III B.Tech II Semester

		L	Т	P	C
23A30603b	PREDICTIVE ANALYTICS (Professional Elective-II)	3	0	0	3

Course Objectives:

- To introduce the fundamental concepts and techniques of predictive analytics.
- To apply statistical models and machine learning algorithms for prediction.
- To interpret model performance using evaluation metrics.
- To explore feature engineering, model tuning, and cross-validation.
- To implement predictive solutions for real-world business and research problems.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- Understand the principles and importance of predictive analytics.
- Apply regression and classification models for predictive tasks.
- Perform data preprocessing, feature selection, and transformation.
- Evaluate and validate models using standard metrics.
- Design predictive solutions to solve domain-specific challenges.

UNIT I: Introduction to Predictive Analytics

Introduction to Predictive Analytics and Business Intelligence, Types of Predictive Models: Classification, Regression, Time Series, Supervised vs Unsupervised Learning, Predictive Modeling Workflow, Applications in Marketing, Finance, Healthcare, Challenges in Predictive Analytics.

UNIT II: Data Preparation and Feature Engineering

Data Cleaning: Handling Missing, Noisy, and Inconsistent Data, Feature Selection and Dimensionality Reduction (PCA, LDA), Feature Scaling: Normalization, Standardization, Encoding Categorical Variables, Feature Extraction and Construction, Dealing with Imbalanced Datasets.

UNIT III: Predictive Modeling with Regression and Classification

Linear Regression and Polynomial Regression, Logistic Regression for Binary Classification, Decision Trees and Random Forest, k-Nearest Neighbors (k-NN) and Naïve Bayes, Support Vector Machines (SVM), Model Selection and Comparison.

UNIT IV: Model Evaluation and Validation

Training, Testing, and Validation Sets, Cross-Validation Techniques (k-Fold, Stratified, LOOCV), Evaluation Metrics: Accuracy, Precision, Recall, F1 Score, ROC-AUC, Confusion Matrix and Classification Report, Bias-Variance Trade-off and Overfitting, Hyperparameter Tuning: Grid Search, Random Search.

UNIT V: Advanced Topics and Applications

Ensemble Learning: Bagging, Boosting (AdaBoost, XGBoost), Predictive Analytics with Time Series (ARIMA, Prophet), Deep Learning for Predictive Modeling (ANNs, LSTM), Use of Predictive Analytics in IoT, Retail, and Healthcare, Ethics and Privacy in Predictive Analytics, Building and Deploying End-to-End Predictive Systems.

Textbooks:

- 1. **Dean Abbott**, Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst, Wiley, 2014.
- 2. **John D. Kelleher, Brendan Tierney**, Data Science: Predictive Analytics and Data Mining, MIT Press, 2018.

Reference Books:

1. **Galit Shmueli et al.**, Data Mining for Business Analytics: Concepts, Techniques, and Applications in R, Wiley, 2017.

- 2. **Eric Siegel**, Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, Wiley, 2016.
- 3. **Trevor Hastie, Robert Tibshirani, Jerome Friedman**, The Elements of Statistical Learning, Springer, 2009.

- 1. https://www.coursera.org/specializations/predictive-analytics Coursera Specialization
- 2. https://www.edx.org/course/data-science-and-machine-learning-capstone edX Predictive Analytics Courses
- 3. https://www.kaggle.com/learn/intro-to-machine-learning Kaggle Tutorials

III B.Tech II Semester

		L	Т	P	C
23A33603b	BLOCKCHAIN FOR AI (Professional Elective-II)	3	0	0	3

Course Objectives:

- To understand the foundational concepts of blockchain technology and its architecture.
- To explore smart contracts, consensus algorithms, and distributed ledger technology.
- To investigate the integration of AI with blockchain for secure, decentralized applications.
- To develop blockchain-enabled AI solutions for real-world use cases.
- To understand the ethical, security, and scalability challenges in Blockchain-AI ecosystems.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- Explain the fundamentals of blockchain and its components.
- Analyze the role of consensus mechanisms in maintaining trust and decentralization.
- Apply blockchain for secure data sharing in AI systems.
- Develop and deploy smart contracts using Ethereum/Solidity.
- Evaluate blockchain-based AI applications in healthcare, finance, and supply chains.

UNIT I: Blockchain Fundamentals and Architecture

Introduction to Blockchain Technology, Components: Blocks, Hashing, Merkle Trees, Types of Blockchains: Public, Private, Consortium, Distributed Ledger Technology (DLT) and P2P Networks, Blockchain Structure and Mining, Use Cases and Evolution of Blockchain.

UNIT II: Smart Contracts and Consensus Mechanisms

Smart Contracts: Definition, Features, Use Cases, Ethereum and Solidity Basics, Consensus Algorithms: PoW, PoS, DPoS, PBFT, Gas, Transactions, and Events in Ethereum, Hyperledger Fabric: Architecture and Chaincode, Deployment and Testing of Smart Contracts.

UNIT III: Integration of Blockchain and AI

Motivation for Integrating Blockchain with AI, Decentralized AI Models and Federated Learning, Secure Model Sharing and Provenance, Blockchain for Data Integrity in AI Systems, AI for Blockchain (e.g., optimizing consensus), Case Study: Decentralized AI Marketplace.

UNIT IV: Applications of Blockchain in AI Systems

Blockchain for Explainable and Trusted AI, Applications in Healthcare and Genomics, Blockchain for Autonomous Vehicles and IoT, Financial AI Systems with Smart Contracts, Supply Chain and Logistics Intelligence, NFT-based AI Applications (Digital Identity, IP).

UNIT V: Security, Privacy and Challenges in Blockchain-AI

Security Challenges: Sybil Attacks, 51% Attacks, Privacy Preservation and Zero Knowledge Proofs, Scalability and Energy Concerns in Blockchain-AI, Ethical and Legal Concerns in AI with Blockchain, Interoperability of Blockchain Platforms, Future Trends: Quantum-Resistant Blockchain-AI.

Textbooks:

- 1. Imran Bashir, Mastering Blockchain: Unlocking the Power of Cryptocurrencies, Smart Contracts, and Decentralized Applications, Packt, 2020.
- 2. Melanie Swan, Blockchain: Blueprint for a New Economy, O'Reilly Media, 2015.
- 3. Joseph Holbrook, Architecting AI Solutions on Blockchain, Packt Publishing, 2020.

Reference Books:

- 1. Arshdeep Bahga, Vijay Madisetti, Blockchain Applications: A Hands-On Approach, VPT, 2017.
- 2. Karamjit Singh, Blockchain for AI: Use Cases and Implementation, Springer, 2023.
- 3. Roger Wattenhofer, The Science of the Blockchain, 2016.

- Coursera: Blockchain Specialization University at Buffalo
- edX: Blockchain Fundamentals UC Berkeley
- Coursera: AI and Blockchain IBM

		L	T	P	C
23A32604	QUANTUM COMPUTING (Professional Elective-III)	3	0	0	3

Course Objectives:

- To introduce the principles and mathematical foundations of quantum computation.
- To understand quantum gates, circuits, and computation models.
- To explore quantum algorithms and their advantages over classical ones.
- To develop the ability to simulate and write basic quantum programs.
- To understand real-world applications and the future of quantum computing in AI, cryptography, and optimization.

Course Outcomes:

Upon successful completion of this course, students will be able to:

- Explain the fundamental concepts of quantum mechanics used in computing.
- Construct and analyze quantum circuits using standard gates.
- Apply quantum algorithms like Deutsch-Jozsa, Grover's, and Shor's.
- Develop simple quantum programs using Qiskit or similar platforms.
- Analyze applications and challenges of quantum computing in real-world domains.

UNIT I: Fundamentals of Quantum Mechanics and Linear Algebra

Classical vs Quantum Computation, Complex Numbers, Vectors, and Matrices, Hilbert Spaces and Dirac Notation, Quantum States and Qubits, Superposition and Measurement, Tensor Products and Multi-Qubit Systems.

UNIT II: Quantum Gates and Circuits

Quantum Logic Gates: Pauli, Hadamard, Phase, Controlled Gates and CNOT, Unitary Operations and Reversibility, Quantum Circuit Representation, Quantum Teleportation, Simulation of Quantum Circuits.

UNIT III: Quantum Algorithms and Complexity

Quantum Parallelism and Interference, Deutsch and Deutsch-Jozsa Algorithms, Grover's Search Algorithm, Shor's Factoring Algorithm, Quantum Fourier Transform, Complexity Classes: BQP, P, NP, and QMA.

UNIT IV: Quantum Programming and Simulation Platforms

Introduction to Qiskit and IBM Quantum Experience, Writing Quantum Circuits in Qiskit, Measuring Qubits and Results, Classical-Quantum Hybrid Programs, Noisy Intermediate-Scale Quantum (NISQ) Systems, Limitations and Current State of Quantum Hardware.

UNIT V: Applications and Future of Quantum Computing

Quantum Machine Learning: Basics and Models, Quantum Cryptography and Quantum Key Distribution, Quantum Algorithms in AI and Optimization, Quantum Advantage and Supremacy, Ethical and Societal Impact of Quantum Technologies, Future Trends and Research Directions.

Textbooks:

- 1. Michael A. Nielsen, Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 10th Anniversary Edition, 2010.
- 2. Eleanor Rieffel and Wolfgang Polak, Quantum Computing: A Gentle Introduction, MIT Press, 2011.
- 3. Chris Bernhardt, Quantum Computing for Everyone, MIT Press, 2019.

Reference Books:

- 1. David McMahon, Quantum Computing Explained, Wiley, 2008.
- 2. Phillip Kaye, Raymond Laflamme, Michele Mosca, An Introduction to Quantum Computing, Oxford University Press, 2007.
- 3. Scott Aaronson, Quantum Computing Since Democritus, Cambridge University Press, 2013.

- IBM Quantum Experience and Qiskit Tutorials
- Coursera Quantum Mechanics and Quantum Computation by UC Berkeley
- *edX The Quantum Internet and Quantum Computers*
- YouTube Quantum Computing for the Determined by Michael Nielsen
- Qiskit Textbook IBM Quantum

23A30603		L	T	P	C
C C	AI FOR FINANCE (Professional Elective-III)	3	0	0	3

Course Objectives:

- To introduce the role of Artificial Intelligence (AI) in financial applications and decision-making.
- To understand financial data types, sources, and processing methods.
- To apply machine learning and deep learning models in various finance sectors.
- To analyze risk, fraud detection, credit scoring, and portfolio management using AI.
- To evaluate ethical and regulatory challenges in AI-enabled finance.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- Describe the fundamentals of AI techniques applicable to finance.
- Analyze financial time series data using AI-based models.
- Apply machine learning for fraud detection and credit risk analysis.
- Build predictive models for stock prices, trading, and customer segmentation.
- Evaluate the limitations and ethical implications of AI in financial systems.

UNIT I: Introduction to Finance and AI Applications

Introduction to Financial Markets and Instruments, Overview of AI Techniques in Finance, Types of Financial Data: Market, Transactional, Customer, Financial Statements and Key Indicators, AI Use Cases in Banking, Insurance, and Investment, FinTech and the Rise of Robo-Advisors.

UNIT II: Machine Learning in Finance

Supervised Learning for Credit Scoring, Unsupervised Learning for Customer Segmentation, Feature Engineering for Financial Data, Handling Imbalanced Datasets in Fraud Detection, Time Series Forecasting with Regression and ARIMA, Model Validation and Backtesting in Finance.

UNIT III: Deep Learning and NLP in Finance

Introduction to Deep Learning for Finance, Stock Price Prediction using LSTM and RNNs, Sentiment Analysis from Financial News and Tweets, NLP for Document Classification: Earnings Reports, Chatbots and Virtual Assistants in Banking, Reinforcement Learning for Portfolio Optimization.

UNIT IV: AI-Driven Financial Applications

Fraud Detection Systems using ML and DL, Credit Risk and Loan Default Prediction, AI in Algorithmic and High-Frequency Trading, Robo-Advisors: Architecture and Optimization, Blockchain and AI Integration for Financial Security, Case Studies: AI in Wealth Management & Insurance.

UNIT V: Ethics, Regulation, and Future of AI in Finance

Regulatory Frameworks in AI-based Finance, Explainability and Interpretability of Financial Models, Ethical Issues: Bias, Fairness, Transparency, Data Privacy and GDPR in Financial AI, Responsible AI Practices in Finance, Emerging Trends: Quantum AI, Decentralized Finance (DeFi).

Textbooks:

- 1. Yves Hilpisch, Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly, 2020.
- 2. Yves Hilpisch, Python for Finance: Mastering Data-Driven Finance, O'Reilly, 2018.
- 3. Markus Loecher, Machine Learning for Finance, Packt Publishing, 2021.

Reference Books:

- 1. A. W. Lo, The Evolution of Technical Analysis, Wiley Finance, 2010.
- 2. Tony Guida, Big Data and Machine Learning in Quantitative Investment, Wiley, 2019.
- 3. Tucker Balch, AI for Trading Georgia Tech Specialization, Coursera.

- Coursera: AI for Trading by NYIF and Google Cloud
- edX: Artificial Intelligence in Finance NYIF
- Udemy: Machine Learning and AI in Finance
- DataCamp: Financial Trading with Python
- YouTube: AI for Finance by Sentdex, Two Minute Papers, and DataProfessor

III B.Tech II Semester

2	3A30604		L	T	P	C
	C	SOCIAL NETWORK ANALYSIS (Professional Elective-III)	3	0	0	3

Course Objectives:

- To introduce the fundamentals and key concepts of social network theory and graph theory.
- To analyze the structure and properties of large-scale social networks.
- To apply centrality, influence, and community detection measures.
- To model information diffusion and network dynamics.
- To implement real-world social network analysis using tools and datasets.

Course Outcomes:

At the end of the course, the student will be able to:

- Understand basic network models and social network structures.
- Analyze key properties like centrality, clustering, and small-world effect.
- Apply community detection algorithms and influence maximization.
- Interpret diffusion models for viral marketing and information spread.
- Use tools such as Gephi, NetworkX, or SNAP for real-world SNA.

UNIT I: Introduction to Social Networks and Graph Theory

Basic Concepts: Graphs, Nodes, Edges, Directed/Undirected Graphs, Real-world Examples: Facebook, Twitter, LinkedIn, Adjacency Matrix and Graph Representation, Types of Social Networks: Ego, Bipartite, Multilayer, Degree Distribution, Path Length, and Connectivity, Random Graph Models: Erdős–Rényi and Watts-Strogatz.

UNIT II: Structural Properties of Networks

Network Centrality Measures: Degree, Closeness, Betweenness, Eigenvector Centrality and PageRank, Network Clustering and Community Detection Basics, Triadic Closure and Clustering Coefficient, Small-world Phenomenon and Milgram's Experiment, Homophily, Influence, and Structural Balance.

UNIT III: Community Detection and Subgroup Analysis

Girvan—Newman Algorithm and Modularity, Label Propagation and Louvain Method, Clique Detection and k-Core Decomposition, Overlapping Communities and Fuzzy Clustering, Cohesive Subgroups and Structural Equivalence, Evaluation Metrics: NMI, Modularity Score.

UNIT IV: Information Diffusion and Influence in Networks

Models of Diffusion: Linear Threshold and Independent Cascade, Influence Maximization and Viral Marketing, Contagion Models and Epidemic Spreading, Rumor Propagation and Cascade Models, Information Bottlenecks and Bridges, Measuring Influence and Reach.

UNIT V: Tools, Applications, and Ethics in SNA

SNA Tools: Gephi, Pajek, NetworkX, SNAP, Case Study: Twitter and Hashtag Analysis, LinkedIn Network Mining and Graph Features, Applications in Marketing, Security, and Epidemiology, Ethical Issues in Social Network Data Mining, Building and Visualizing Your Own Social Graph.

Textbooks:

- 1. Wasserman, S., & Faust, K., Social Network Analysis: Methods and Applications, Cambridge University Press, 1994.
- 2. Easley, D., & Kleinberg, J., Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
- 3. Newman, M., Networks: An Introduction, Oxford University Press, 2010.

Reference Books:

- 1. Borgatti, S. P., Everett, M. G., & Johnson, J. C., Analyzing Social Networks, SAGE Publications, 2018.
- 2. Barabási, A.-L., Linked: How Everything Is Connected to Everything Else, Basic Books, 2014
- 3. Hansen, D., Shneiderman, B., & Smith, M. A., Analyzing Social Media Networks with NodeXL, Elsevier, 2020.

- Coursera Social Network Analysis (University of Michigan)
- [YouTube NetworkX and Gephi Tutorials (freeCodeCamp, TheNetNinja)]
- edX Networks: Friends, Money, and Bytes (University of California, Berkeley)
- Khan Academy Graph Theory

III B.Tech II Semester

		L	T	P	C
23A33604	CYBERSECURITY & AI-DRIVEN THREAT DETECTION (Professional Elective-III)	3	0	0	3

Course Objectives:

- To provide a foundational understanding of cybersecurity principles and threat landscapes.
- To explore the application of AI and machine learning techniques in detecting cyber threats.
- To analyze malware behavior, intrusion patterns, and anomaly detection using intelligent systems.
- To evaluate and build automated systems for real-time security analytics.
- To understand the ethical, legal, and societal implications of AI-driven security systems.

Course Outcomes:

At the end of the course, students will be able to:

- Understand cybersecurity frameworks, threat types, and vulnerabilities.
- Apply AI/ML techniques for cyber threat identification and classification.
- Analyze patterns in malware, network traffic, and security logs.
- Design and evaluate intelligent intrusion detection and prevention systems.
- Explore ethical hacking practices and policy aspects in AI-based security.

UNIT I: Fundamentals of Cybersecurity

Introduction to Cybersecurity: CIA Triad, Threats & Vulnerabilities, Types of Attacks: Malware, Phishing, DDoS, Insider Threats, Security Policies and Access Controls, Risk Assessment and Vulnerability Management, Cryptography Basics: Symmetric, Asymmetric, Hash Functions, Cybersecurity Frameworks: NIST, ISO 27001, OWASP.

UNIT II: Machine Learning for Cyber Threat Detection

Supervised and Unsupervised Learning in Security Contexts, Feature Engineering for Security Data, Classification Models for Intrusion Detection (SVM, RF, KNN), Clustering Techniques for Anomaly Detection, Evaluation Metrics: Accuracy, Precision, ROC, F1 Score, Case Study: AI for Email Phishing Detection.

UNIT III: Deep Learning in Threat Intelligence

Deep Neural Networks for Cybersecurity, RNNs and LSTMs for Log and Sequence Data, Autoencoders for Anomaly Detection, CNNs for Malware Classification using Binary Analysis, Adversarial Attacks on AI-based Security Systems, Case Study: Threat Detection using Deep Learning.

UNIT IV: Real-Time Threat Detection and SIEM Systems

Security Information and Event Management (SIEM), Log Analysis and Real-Time Alerting, Threat Intelligence Platforms (TIPs), Integration of AI in SIEM Tools (Splunk, ELK Stack), Network Traffic and Packet Inspection using ML, SOC Operations and Automation using AI

UNIT V: Ethical Hacking, Privacy, and Legal Aspects

Penetration Testing & Ethical Hacking with AI Tools, Red Team vs. Blue Team Simulation, Data Privacy Regulations: GDPR, HIPAA, Cyber Laws, AI Bias and Fairness in Security Decision-Making, Case Study: Ethical Dilemmas in AI Security Systems, Future Trends: Zero Trust, AI SOC, Federated Threat Detection.

Textbooks:

- 1. Stallings, W., Network Security Essentials: Applications and Standards, Pearson Education.
- 2. Shon Harris & Fernando Maymi, CISSP All-in-One Exam Guide, McGraw Hill.
- 3. Emmanuel Tsukerman, Machine Learning for Cybersecurity Cookbook, Packt Publishing.
- 4. Clarence Chio & David Freeman, Machine Learning and Security, O'Reilly Media.

Reference Books:

- 1. John Paul Mueller, Luca Massaron, Machine Learning for Dummies, Wiley.
- 2. Mark Stamp, Information Security: Principles and Practice, Wiley.
- 3. Bruce Schneier, Secrets and Lies: Digital Security in a Networked World, Wiley.
- 4. Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning, Cambridge University Press.

- Coursera AI for Cybersecurity (IBM)
- edX Cybersecurity Fundamentals by Rochester Institute of Technology
- MIT OpenCourseWare Computer and Network Security
- [YouTube Cybersecurity & AI Tutorials by Simplifearn, Great Learning]
- Udemy Machine Learning for Cybersecurity
- Splunk Documentation AI & Threat Detection

23A33605

BIG DATA & CLOUD COMPUTING LAB (Professional Core)

L	T	P	С
0	0	3	1.5

Course Objectives:

- To provide hands-on experience in working with big data tools and cloud computing environments.
- To equip students with practical skills in data ingestion, transformation, analysis, and visualization using Hadoop and Spark ecosystems.
- To enable deployment and management of cloud services using AWS, Azure, or GCP.
- To expose students to cloud-native storage, computing, and container orchestration techniques.
- To integrate big data workflows with cloud infrastructure for scalable, distributed data processing.

Course Outcomes:

- Students will be able to implement big data pipelines and cloud-based solutions using tools like Hadoop, Spark, and cloud platforms such as AWS, Azure, or GCP.
- Students gain proficiency in managing distributed data processing, scalable storage, cloud service provisioning, and deploying applications using containers and orchestration platforms.
- Students will understand the synergy between big data technologies and cloud computing to solve real-world problems efficiently.

List of Lab Experiments:

- 1. Installation and Configuration of Hadoop Cluster (Single Node & Multi-node) Hadoop HDFS setup, NameNode & DataNode configuration
- 2. Working with HDFS: File Operations
 - Upload, read, delete, and replicate files in HDFS
- 3. MapReduce Programming Basics
 - Word count, sorting, and filtering examples in Java/Python
- 4. Apache Hive & Pig for Querying Large Datasets
 - Creation of tables, data loading, and running queries
- 5. Apache Spark Basics: RDDs and DataFrames
 - Implement Spark transformations and actions
- 6. Data Preprocessing and Machine Learning using PySpark MLlib
 - Classification or regression using MLlib pipelines
 - (Cognitive Level: Apply & Evaluate)
- 7. Introduction to Cloud Computing and AWS/Azure/GCP Console
 - Creating virtual machines, basic compute and storage services
- 8. Cloud Storage and Database Services
 - Using S3 (AWS), Blob (Azure), or GCP buckets and Cloud SQL/NoSQL
- 9. Deploying Big Data Workloads on Cloud (EMR, HDInsight, Dataproc)
 - Running Hadoop/Spark jobs in cloud-managed services
- 10. Cloud Function/Serverless Deployment
- 11. Building and deploying a serverless function (e.g., AWS Lambda) Containerization with Docker

12. Building, running, and managing Docker containers

Orchestration with Kubernetes in the Cloud $\,$ Deploy and manage a containerized application using GKE/EKS/AKS

Text Books:

- 1. Tom White, Hadoop: The Definitive Guide, O'Reilly Media.
- 2. Rajkumar Buyya et al., Mastering Cloud Computing, McGraw-Hill Education.
- 3. Holden Karau et al., Learning Spark: Lightning-Fast Big Data Analysis, O'Reilly Media.

Reference Books:

- 1. Vignesh Prajapati, Big Data Analytics with R and Hadoop, Packt Publishing.
- 2. Benjamin Bengfort, Data Analytics with Hadoop, O'Reilly.
- 3. Srinivasan & J.Shrinivasan, Cloud Computing A Hands-on Approach, Wiley India.

Online Courses:

- 1. Big Data Specialization Coursera (University of California San Diego)
- 2. Cloud Computing Basics edX (LearnQuest)
- 3. Data Engineering with Google Cloud Coursera (Google)

23A33606	Full Stack AI Lab	L	T	P	С
	(Professional Core)	0	0	3	1.5

Course Objectives:

- Enable students to build end-to-end AI-powered web applications.
- Integrate frontend, backend, database, and AI models in real-time.
- Provide hands-on experience with Flask, Express, MongoDB, React, and ML models.
- Develop and deploy AI applications using industry-standard practices.

Course Outcomes:

- Design frontend interfaces using React/HTML/CSS.
- Build backend logic using Flask or Node.js APIs.
- Integrate and deploy ML models with web services.
- Store and retrieve data using MongoDB/MySQL.
- Test, debug, and deploy AI-based web applications.

List of Lab Experiments:

Lab Experiments (12 Total)

- 1. Setup Flask or Node.js server with React/HTML frontend.
- 2. Create login/signup system with Express/Flask and MongoDB.
- 3. Train and save ML model (e.g., Naive Bayes, Logistic Regression).
- 4. Build API to serve ML model predictions via Flask.
- 5. Integrate ML predictions in frontend using fetch/AJAX.
- 6. Create dynamic dashboard using Chart.js/Plotly.
- 7. Implement JWT tokens or sessions for authentication.
- 8. Add file upload functionality (image/text for prediction).
- 9. Store interactions/predictions in database and visualize history.
- 10. Create CI/CD pipeline using GitHub Actions/Heroku.
- 11. Build mini-project: News Classifier / Spam Detector / Fake News Detector.
- 12. Final Demo & Deployment on Render/Heroku/Vercel/localhost.

Text Books:

- 1. **"Full Stack Deep Learning"** by Emmanuel Ameisen, O'Reilly, 2020
- 2. **"Flask Web Development"** by Miguel Grinberg, O'Reilly, 2018
- 3. "Python Machine Learning" by Sebastian Raschka, Packt Publishing

Reference Books:

- "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow" by Aurélien Géron
- 2. "MongoDB: The Definitive Guide" by Kristina Chodorow
- 3. "Node.js Design Patterns" by Mario Casciaro

Online Courses:

4. Full Stack Web Development with Flask and Python- Udemy

COLLCAILLE	L	T	P	С
SUFTSKILLS	0	1	2	2

Course Objectives:

- To encourage all round development of the students by focusing on soft skills
- To make the students aware of critical thinking and problem-solving skills
- To enhance healthy relationship and understanding within and outside an organization
- To function effectively with heterogeneous teams

Course Outcomes (CO):

COs	Statements	Blooms
		level
CO1	List out various elements of soft skills	L1, L2,
CO2es	cribe methods for building professional image	L1, L2
CO3	Apply critical thinking skills in problem solving	L3
CO4	Analyse the needs of an individual and team for well-being	L4
CO5	Assess the situation and take necessary decisions	L5
CO6	Create a productive work place atmosphere using social and work-life skills	L6
	ensuring personal and emotional well-being	

SYLLABUS

UNIT – I Soft Skills & Communication Skills

Lecture Hrs

Soft Skills - Introduction, Need - Mastering Techniques of Soft Skills - Communication Skills - Significance, process, types - Barriers of communication - Improving techniques

Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – self-expression – articulating with felicity

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speeches- convincing-negotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non- verbal clues and remedy the lapses on observation

UNIT – II Critical Thinking

Lecture Hrs

Active Listening – Observation – Curiosity – Introspection – Analytical Thinking – Open-mindedness – Creative Thinking - Positive thinking - Reflection

Activities:

Gathering information and statistics on a topic - sequencing - assorting - reasoning - critiquing issues - placing the problem - finding the root cause - seeking viable solution - judging with rationale - evaluating the views of others - Case Study, Story Analysis

UNIT - III

Problem Solving & Decision Making

Lecture Hrs

Meaning & features of Problem Solving – Managing Conflict – Conflict resolution –

Team building - Effective decision making in teams - Methods & Styles

Activities:

Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision.

Case Study & Group Discussion

UNIT – IV **Emotional Intelligence & Stress**

Lecture Hrs

Management

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations.

Providing opportunities for the participants to narrate certain crisis and stress —ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates

UNIT – V Lecture Hrs

Corporate Etiquette

Etiquette- Introduction, concept, significance - Corporate etiquette - meaning, modern etiquette, benefits - Global and local culture sensitivity - Gender Sensitivity - Etiquette in interaction- Cell phone etiquette - Dining etiquette - Netiquette - Job interview etiquette - Corporate grooming tips -

Overcoming challenges

Activities

Providing situations to take part in the Role Plays where the students will learn about bad and good manners and etiquette - Group Activities to showcase gender sensitivity, dining etiquette etc. - Conducting mock job interviews - Case Study - Business Etiquette Games

NOTE-:

- 1.The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.
- 2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear.

Prescribed Books:

- 1. Mitra Barun K, *Personality Development and Soft Skills*, Oxford University Press, Pap/Cdr edition 2012
- 2. Dr Shikha Kapoor, *Personality Development and Soft Skills: Preparing for Tomorrow*, I K International Publishing House, 2018

Reference Books

- 1. Sharma, Prashant, *Soft Skills: Personality Development for Life Success*, BPB Publications 2018.
- 2. Alex K, Soft Skills S. Chand & Co, 2012 (Revised edition)
- **3.** Gajendra Singh Chauhan& Sangeetha Sharma, *Soft Skills: An Integrated Approach to Maximise Personality* Published by Wiley, 2013
- **4.** Pillai, Sabina & Fernandez Agna, *Soft Skills and Employability Skills*, Cambridge University Press, 2018
- **5.** Dr. Rajiv Kumar Jain, Dr. Usha Jain, *Life Skills*(Paperback English)Publisher: Vayu Education of India, 2014

- 1. https://youtu.be/DUIsNJtg2L8?list=PLLy_2iUCG87CQhELCytvXh0E_y-bOO1_q
- 2. https://youtu.be/xBaLgJZ0t6A? list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- 3. https://youtu.be/-Y-R9hDl7lU
- 4. https://youtu.be/gkLsn4ddmTs
- 5. https://youtu.be/2bf9K2rRWwo
- 6. https://youtu.be/FchfE3c2jzc
- 7. https://www.businesstrainingworks.com/training-resource/five-free-business-etiquette-training-games/

- 8. https://onlinecourses.nptel.ac.in/noc24 hs15/preview
 9. https://onlinecourses.nptel.ac.in/noc21 hs76/preview

III B.Tech II Semester

23A52601 TECHNICAL REPORT W	TECHNICAL REPORT WRITING & IPR	L	Т	P	C
Z3A3Z001	TECHNICAL REPORT WRITING & IPK	2	0	0	0

Course Objectives:

- 1. To enable the students to practice the basic skills of research paper writing
- 2. To make the students understand the importance of IP and to educate them on the basic concepts of Intellectual Property Rights.
- 3. To practice the basic skills of performing quality literature review
- 4. To help them in knowing the significance of real life practice and procedure of Patents.
- 5. To enable them learn the procedure of obtaining Patents, Copyrights, & Trade Marks

Course Outcomes: On successful completion of this course, the students will be able to:

COURSE OUTCOMES: At the end of the course, students will be able to **Blooms Level** CO1 Identify key secondary literature related to their proposed technical paperL1, L2 writing CO₂ L1, L2 Explain various principles and styles in technical writing CO3 Use the acquired knowledge in writing a research/technical paper L3 CO4 Analyse rights and responsibilities of holder of Patent, Copyright, L4 Trademark, International Trademark etc. CO₅ Evaluate different forms of IPR available at national & international L5 level CO6 Develop skill of making search of various forms of IPR by using modern L3, L6 tools and techniques.

UNIT - I:

Principles of Technical Writing: styles in technical writing; clarity, precision, coherence andlogical sequence in writing-avoiding ambiguity- repetition, and vague language -highlighting your findings-discussing your limitations -hedging and criticizing -plagiarism and paraphrasing.

UNIT - II:

Technical Research Paper Writing: Abstract- Objectives-Limitations-Review of Literature- Problems and Framing Research Questions- Synopsis

UNUNIT - III:

Process of research: publication mechanism: types of journals- indexing-seminars-conferences- proof reading –plagiarism style; seminar & conference paper writing;

Methodology-discussion-results- citation rules

UNIT - IV:

Introduction to Intellectual property: Introduction, types of intellectual property, International organizations, agencies and treaties, importance of intellectual property rights

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

UNIT - V:

Law of copy rights: Fundamentals of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer. Patent law, intellectual property audits.

Textbooks:

- 1. Deborah. E. Bouchoux, Intellectual Property Rights, Cengage Learning India, 2013
- 2. Meenakshi Raman, Sangeeta Sharma. Technical Communication: Principles and practices. Oxford.

Reference Books:

- 1. R.Myneni, *Law of Intellectual Property*, 9th Ed, Asia law House, 2019.
- 2. Prabuddha Ganguli, Intellectual Property Rights Tata Mcgraw Hill, 2001
- 3. P.Naryan, *Intellectual Property Law*, 3rd Ed, Eastern Law House, 2007.
- 4. Adrian Wallwork. *English for Writing Research Papers* Second Edition. Springer Cham Heidelberg New York ,2016
- 5. Dan Jones, Sam Dragga, Technical Writing Style

Online Resources

- ${\bf 1.} \ \underline{https://theconceptwriters.com.pk/principles-of-technical-writing/}$
- 2. https://www.ewh.ieee.org/soc/emcs/acstrial/newsletters/summer10/

TechPaperWriting.html

- 3. https://www.ewh.ieee.org/soc/emcs/acstrial/newsletters/summer10/TechPaperWriting.html
- 4. https://www.manuscriptedit.com/scholar-hangout/process-publishing-research-paper-journal/
- 5. https://www.icsi.edu/media/website/IntellectualPropertyRightLaws&Practice.pdf
- 6. https://lawbhoomi.com/intellectual-property-rights-notes/
- 7. https://www.extension.purdue.edu/extmedia/ec/ec-723.pdf

IV B.Tech I Semester

		L	T	P	C
23A30701	Generative AI (Professional Core)	3	0	0	3

Course Objectives

- Introduce the fundamentals of Generative AI, including its principles, architecture, and evolution.
- Provide a deep understanding of Large Language Models (LLMs) and their application in natural language generation tasks.
- Develop practical knowledge of Prompt Engineering, including prompt tuning, prompt design, and performance evaluation.
- Explore applications of Generative AI across various domains including code generation, art synthesis, content generation, and interactive systems.
- Equip students with ethical, social, and safety considerations when designing and deploying generative AI applications.

Course Outcomes

- Demonstrate a strong understanding of the architecture and functioning of Generative AI models, including transformers and LLMs.
- Be capable of applying prompt engineering techniques to steer model behavior for desired outputs across various tasks.
- Design and fine-tune generative models for applications such as text generation, image creation, music synthesis, and conversational AI.
- Analyze and evaluate the effectiveness of prompts and generated content, using relevant metrics and methodologies.
- Apply ethical principles to ensure responsible development and deployment of generative AI systems.

UNIT I – Introduction to Generative AI(Cognitive Level: Understand, Remember)

Overview of AI and types of AI, What is Generative AI? Definitions and Concepts, Historical evolution of generative models, Types of generative models – GANs, VAEs, Autoregressive Models, Introduction to Transformers and LLMs, Applications and use cases of Generative AI, Challenges in Generative AI development, Introduction to text-to-image and image-to-text models.

UNIT II – Fundamentals of Prompt Engineering

Definition and significance of Prompt Engineering, Types of prompts: Zero-shot, One-shot, Few-shot, Techniques for effective prompt design, Prompt templates and chaining, Prompt tuning and parameter-efficient tuning, Evaluating prompt performance, Use of APIs for testing prompts (OpenAI, Cohere, Anthropic), Best practices and prompt libraries.

UNIT III – Working with Large Language Models (LLMs)

Overview of pre-trained LLMs: GPT, BERT, LLaMA, Claude, PaLM, Architectures and tokenization strategies, Fine-tuning vs. in-context learning, LLM-powered tools (ChatGPT, GitHub Copilot, Bard, Claude), Role of attention mechanism and transformer layers, Tools for model experimentation

(Hugging Face, LangChain), Performance metrics for LLMs, Case studies of model adaptation and deployment.

UNIT IV – Applications of Generative AI

Text generation and summarization, Image and art generation (DALL·E, Midjourney, Stable Diffusion), Code generation and completion tools (Codex, Copilot), Music and video generation, Generative chatbots and customer service, Story generation and dialogue systems, Domain-specific applications (Legal, Healthcare, Education), Comparative study of generative models by task.

UNIT V - Ethics, Security & Responsible AI

Bias and fairness in LLMs and generative systems, Explainability and transparency in generative AI, Copyright and originality issues, Adversarial use of generative models – deepfakes, misinformation, AI safety protocols and red-teaming, Regulatory and policy frameworks for generative AI, Responsible prompt crafting and moderation.

Textbooks

- 1. Deep Learning with Python by François Chollet, Manning Publications
- 2. Transformers for Natural Language Processing by Denis Rothman, Packt
- 3. Practical Generative AI by Amit Shukla, BPB Publications

Reference Books

- 1. Generative Deep Learning by David Foster, O'Reilly
- 2. Artificial Intelligence: A Guide for Thinking Humans by Melanie Mitchell
- 3. Machine Learning B.Techning by Andrew Ng (available online)

Online Courses

- 1. Generative AI with Large Language Models Coursera (AWS & DeepLearning.AI)
- 2. Prompt Engineering for ChatGPT Coursera
- 3. Generative AI Fundamentals Google Cloud Training
- 4. Hugging Face Transformers Course
- 5. DeepLearning.AI Short Courses

IV B.Tech I Semester

IV B.Tech I Semester

Management Course- II	L	T	P	С
_	2	0	0	2

23A52701a BUSINESS ETHICS AND CORPORATE GOVERNANCE

(w.e.f academic year 2023-2024)
Subject Code Title of the Subject L T P C

BUSINESS ETHICS AND 2 0 0 2

CORPORATE GOVERNANCE

COURSE OBJECTIVES: The objectives of this course are

- 1 To make the student understand the principles of business ethics
- 2 To enable them in knowing about the ethics in management
- 3 To facilitate the student' role in corporate culture
- 4 To impart knowledge about the fair-trade practices
- 5 To encourage the student in knowing about the corporate governance

Syllabus

UNIT-I: Ethics

Introduction – Meaning – Nature, Scope, significance, Loyalty, and ethical behavior.. Value systems - Business Ethics - Types, Characteristics, Factors, Contradictions and Ethical Practices in Management - Corporate Social Responsibility – Issues of Management – Crisis Management.

LEARNING OUTCOMES:- After completion of this unit student will

- ➤ Understand the meaning of loyalty and ethical Behavior
- Explain various types of Ethics
- ➤ Analyze issues & crisis of management

UNIT-II: ETHICS IN MANAGEMENT

Introduction- Ethics in production, finance, Human resource management and Marketing Management - The Ethical Value System — Universalism, Utilitarianism, Distributive Justice, Social Contracts, Individual Freedom of Choice, Professional Codes; Culture and Ethics — Ethical Values in different Cultures - Culture and Individual Ethics — professional ethics and technical ethics.

LEARNING OUTCOMES:- After completion of this unit student will

- ➤ Understand the meaning of Ethics in various areas of management
- Compare and contrast professional ethics and technical ethics
- > Develop ethical values in self and organization

UNIT-III: CORPORATE CULTURE

Introduction - Meaning, definition, Nature, and significance — Key elements of corporate culture, shared values, beliefs and norms, rituals, symbols and language - Types of corporate culture, hierarchical culture, market driven culture — Organization leadership and corporate culture, leadership styles and their impact on culture, transformational leadership and culture change.

LEARNING OUTCOMES:- After completion of this unit student will

- ➤ Define corporate culture
- ➤ Understand the key elements of corporate culture
- Analyze organization leadership and corporate culture

UNIT- IV: LEGAL FRAME WORK

Law and Ethics -Agencies enforcing Ethical Business Behavior - Legal Impact – Environmental Protection, Fair Trade Practices, legal Compliances, Safeguarding Health and wellbeing of Customers – Corporate law, Securities and financial regulations, corporate governance codes and principles.

LEARNING OUTCOMES:- After completion of this unit student will

- Understand Law and Ethics
- ➤ Analyze Different fair trade practices
- Make use of Environmental Protection and Fair Trade Practices

UNIT -V: CORPORATE GOVERNANCE

Introduction - Meaning - Corporate governance code, transparency & disclosure -Role of auditors, board of directors and shareholders. Global issues, accounting and regulatory frame work - Corporate scams - Committees in India and abroad, corporate social responsibility. BoDs composition, Cadbury Committee - Various committees - Reports - Benefits and Limitations.

LEARNING OUTCOMES:- After completion of this unit student will

- Understand corporate governance code
- > Analyze role of auditors, board of directors and shareholders in corporate governance
- > Implementing corporate social responsibility in India.

Text books.

- 1. Murthy CSV: Business Ethics and Corporate Governance, HPH July 2017
- 2. Bholananth Dutta, S.K. Podder Corporation Governance, VBH. June 2010

Reference books

- 1. Dr. K. Nirmala, KarunakaraReaddy. Business Ethics and Corporate Governance, HPH
- 2. H.R.Machiraju: Corporate Governance, HPH, 2013
- 3. K. Venkataramana, Corporate Governance, SHBP.
- 4. N.M.Khandelwal. *Indian Ethos and Values for Managers*

COURSE OUTCOMES: At the end of the course, students will be able to		
CO1	Understand the Ethics and different types of Ethics.	L2
CO2	Understand business ethics and ethical practices in management	L2
CO3	Understand the role of ethics in management	L2
CO4	Apply the knowledge of professional ethics & technical ethics	L3
CO5	Analyze corporate law, ethics, codes & principles	L4
CO6	Evaluate corporate governance & corporate scams	L5

BTL = Bloom's Taxonomy Level

ONLINE RESOURCES:

- 1. https://onlinecourses.nptel.ac.in/noc21_mg46/
- 2. https://archive.nptel.ac.in/courses/110/105/110105138/
- 3. https://onlinecourses.nptel.ac.in/noc21_mg54/
- 4. https://onlinecourses.nptel.ac.in/noc22 mg54/
- 5. https://archive.nptel.ac.in/courses/109/106/109106117/

(Elective-2 VII - SEMESTER) (w.e.f. Academic Year – 2023-2024)

Subject Code	Title of the Subject	L	T	P	C
	E-Business	2	0	0	2

Course Objectives: The Objectives of this course are

- 1 To provide knowledge on emerging concept on E-Business related aspect.
- 2 To understand various electronic markets & business models.
- To impart the information about electronic payment systems & banking.
- 4 To create awareness on security risks and challenges in E-commerce.
- 5 To the students aware on different e-marketing channels & strategies.

Syllabus

Unit-I: Electronic Business

Introduction – Nature, meaning, significance, functions and advantages - Definition of Electronic Business - Functions of Electronic Commerce (EC)-Advantages & Disadvantages of E-Commerce – E-Commerce and E-Business, Internet Services, Online Shopping- E-Commerce Opportunities for Industries.

Learning Outcomes: - After completion of this unit student

- ➤ Understand the concept of E-Business
- ➤ Contrast and compare E-Commerce & E-Business
- > Evaluate opportunities of E-commerce for industry

Unit-II: Electronic Markets and Business Models

Introduction –E-Shops-E-Malls E-Groceries - Portals - Vertical Portals-Horizontal Portals - Advantages of Portals -Business Models- Business to Business (B2B)-Business to Customers(B2C) - Business to Government(B2G)-Auctions-B2B Portals in India

Learning Outcomes: -After completion of this unit student will

- Understand the concept of business models
- ➤ Contrast and compare Vertical portal and Horizontal portals
- ➤ Analyze the B2B,B2C and B2G model

Unit-III: Electronic Payment Systems:

Introduction to electronic payment systems (EPS) -Types of electronic payments - Credit/debit cards, e-wallets, UPI, and crypto currencies -Smart cards and digital wallets: Features and usage -Electronic Fund Transfer (EFT): Role in business transactions -Infrastructure requirements and regulatory aspects of e-payments

Learning Outcomes: -After completion of this unit student will

- Understand the Electronic payment system
- ➤ Contrast and compare EFT and smart cards
- Analyze debit card and credit cards

Unit-IV:E-Security

Security risks and challenges in electronic commerce - Cyber threats - Phishing, hacking, identity theft, and malware - Digital Signatures & Certificates - Security protocols over public networks (HTTP, SSL, TLS) -Firewalls in securing e-business platforms.

Learning Outcomes: -After completion of this unit student will

- Understand E-Security
- Contrast and compare security protocols and public network
- ➤ Evaluate on Digital signature

Unit-V:E-Marketing:

Introduction – Online Marketing – Advantages of Online Marketing – Internet Advertisement – Advertisement Methods – Conducting Online Market Research – E-marketing planning: Online branding, social media marketing, and email marketing - E-business strategies: Digital advertising, content marketing, and analytics – E-Customer Relationship Management (eCRM) E-supply chain management (e-SCM)

Learning Outcomes: -After completion of this unit student will

- Understand the concept of online marketing
- ➤ Apply the knowledge of online marketing
- Compare e-CRM and e-SCM

Text Books:

- 1. Arati Oturkar&Sunil Khilari. *E-Business*. Everest Publishing House, 2022
- 2. P.T.S Joseph. *E-Commerce*, Fourth Edition, Prentice Hall of India, 2011

References:

- 1. Debjani, Kamalesh K Bajaj. E-Commerce, Second Edition Tata McGraw-Hill's, 2005
- 2. Dave Chaffey. *E-Commerce E-Management*, Second Edition, Pearson, 2012.
- 3. Henry Chan. *E-Commerce Fundamentals and Application*, RaymondLeathamWiley India 2007

4. S. Jaiswal. *E-Commerce* GalgotiaPublication Pvt Ltd., 2003.

COURS	E OUTCOMES: At the end of the course student will be able to	BTI
CO1	Remember E-Business & its nature, scope and functions.	L1
CO2	Understand E-market-Models which are practicing by the organizations	L2
CO3	Apply the concepts of E-Commerce in the present globalized world.	L3
CO4	Analyze the various E-payment systems & importance of net banking.	L4
CO5	Evaluate market research strategies & E-advertisements.	L5
CO6	Understand importance of E-security & control	L2

BTL = Bloom's Taxonomy Level

Online Resources:

https://www.slideshare.net/fatimahAlkreem/e-businessppt-67935771

 $\underline{https://www.slideshare.net/VikramNani/e-commerce-business-models}$

https://www.slideshare.net/RiteshGoyal/electronic-payment-system

https://www.slideshare.net/WelingkarDLP/electronic-security

https://www.slideshare.net/Ankitha2404/emarketing-ppt

23A52701c 2 0 0 2

Management Science

COURSE OBJECTIVES: The objectives of this course are

- 1 To provide fundamental knowledge on Management, Administration, Organization & its concepts.
- 2 To make the students understand the role of management in Production
- To impart the concept of HRM in order to have an idea on Recruitment, Selection, Training & Development, job evaluation and Merit rating concepts
- 4 To create awareness on identify Strategic Management areas & the PERT/CPM for better Project Management
- 5 To make the students aware of the contemporary issues in modern management

UNIT- IINTRODUCTION TO MANAGEMENT

Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both. Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Elton Mayo's Human relations - **Organizational Designs** - Line organization - Line & Staff Organization - Functional Organization - Matrix Organization - Project Organization - Committee form of Organization - Social responsibilities of Management.

LEARNING OUTCOMES: At the end of the Unit, the students will be able to

- ➤ Understand the concept of management and organization
- ➤ Apply the concepts & principles of management in real life industry.
- ➤ Analyze the organization chart & structure of an enterprise.

UNIT - II OPERATIONS MANAGEMENT

Principles and Types of Plant Layout - Methods of Production (Job, batch and Mass Production), Work Study - Statistical Quality Control- **Material Management** - Objectives - Inventory-Functions - Types, Inventory Techniques - EOQ-ABC Analysis - **Marketing Management** - Concept - Meaning - Nature-Functions of Marketing - Marketing Mix - Channels of Distribution - Advertisement and Sales Promotion - Marketing Strategies based on Product Life Cycle.

LEARNING OUTCOMES: At the end of the Unit, the students will be able to

- Understand the core concepts of Operations Management
- Apply the knowledge of Quality Control, Work-study principles in real life industry.
- ➤ Evaluate Materials departments & Determine EOQ
- Analyze Marketing Mix Strategies for an enterprise.
- Create and design advertising and sales promotion

UNIT - III HUMAN RESOURCES MANAGEMENT (HRM)

HRM - Definition and Meaning — Nature - Managerial and Operative functions - Job Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment - Employee Selection - Process - Employee Training and Development - methods - Performance Appraisal Concept - Methods of Performance Appraisal — Placement - Employee Induction - Wage and Salary Administration

LEARNING OUTCOMES: At the end if the Unit, the students will be able to

- ➤ Understand the concepts of HRM, Recruitment, Selection, Training & Development
- ➤ Analyze the need of training
- > Evaluate performance appraisal
- > Design the basic structure of salaries and wages

UNIT - IV STRATEGIC & PROJECT MANAGEMENT

Definition& Meaning - Setting of Vision - Mission - Goals - Corporate Planning Process - Environmental Scanning - Steps in Strategy Formulation and Implementation - SWOT Analysis - **Project Management** - Network Analysis - Programme Evaluation and Review Technique (PERT) - Critical Path Method (CPM) Identifying Critical Path - Probability of Completing the project within given time - Project Cost- Analysis - Project Crashing (Simple problems).

LEARNING OUTCOMES: At the end of the Unit, the students will be able to

- Understand Mission, Objectives, Goals & strategies for an enterprise
- ➤ Apply SWOT Analysis to strengthen the project
- ➤ Analyze Strategy formulation and implementation
- ➤ Evaluate PERT and CPM Techniques

UNIT - V CONTEMPORARY ISSUES IN MANAGEMENT

Customer Relations Management(CRM) - Total Quality Management (TQM) - Six Sigma Concept - Supply Chain Management(SCM) - Enterprise Resource Planning (ERP) - Performance Management - employee engagement and retention - Business Process Re-engineering and Bench Marking - Knowledge Management - change management - sustainability and corporate social responsibility.

LEARNING OUTCOMES At the end if the Unit, the students will be able to

- > Understand modern management techniques
- ➤ Apply Knowledge in Understanding in TQM, SCM
- ➤ Analyze CRM, BPR
- ➤ Evaluate change management & sustainability

Text Books:

1. Frederick S. Hillier, Mark S. Hillier. *Introduction to Management Science*, October 26, 2023

2. A.R Aryasri, Management Science, TMH, 2019

References:

- 1. Stoner, Freeman, Gilbert. Management, Pearson Education, New Delhi, 2019.
- 2. Koontz & Weihrich, Essentials of Management, 6/e, TMH, 2005.
- 3. Thomas N.Duening & John M.Ivancevich, Management Principles and Guidelines, Biztantra.
- 4. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2004.
- 5. Samuel C.Certo, Modern Management, 9/e, PHI, 2005

COURS	E OUTCOMES: At the end of the course, students will be able to	BTL
CO1	Remember the concepts & principles of management and designs of organization in a practical world	L1
CO2	Understand the knowledge of Work-study principles & Quality Control techniques in industry	L2
CO3	Apply the process of Recruitment & Selection in organization.	L3
CO4	Analyze the concepts of HRM & different training methods.	L4
CO5	Evaluate PERT/CPM Techniques for projects of an enterprise and estimate time & cost of project & to analyze the business through SWOT.	L5
CO6	Create awareness on contemporary issues in modern management & technology.	L3

BTL = Blooms Taxonomy Level

ONLINE RESOUECES:

- $1. \quad \underline{\text{https://www.slideshare.net/slideshow/introduction-to-management-and-organization-}} \\ \underline{231308043/231308043}$
- 2. https://nptel.ac.in/courses/112107238
- 3. https://archive.nptel.ac.in/courses/110/104/110104068/
- 4. https://archive.nptel.ac.in/courses/110/105/110105069/
- 5. https://onlinecourses.nptel.ac.in/noc24_mg112/

23A33701		L	Т	P	C
a	EXPLAINABLE AI &MODEL INTERPRETABILITY (Professional Elective-IV)	3	0	0	3

Course Objectives:

- To introduce the principles of interpretability and explainability in AI/ML models.
- To analyze the trade-offs between model accuracy and interpretability.
- To explore popular post-hoc and intrinsic explainability techniques.
- To examine fairness, accountability, and transparency in AI systems.
- To develop hands-on skills with interpretability tools and libraries.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- Understand the need for explainability in modern AI systems.
- Differentiate between black-box and white-box models.
- Apply interpretability techniques such as SHAP, LIME, and PDPs.
- Evaluate the fairness and transparency of AI systems.
- Use explainability tools for model auditing and deployment in high-stakes domains.

UNIT I: Foundations of Explainable AI

Introduction to Explainability and Interpretability, Importance of XAI in Healthcare, Finance, and Law , White-box vs Black-box Models, Desiderata: Fairness, Accountability, Transparency, Human-Centered AI and Trust ,Taxonomy of XAI Techniques (Global vs Local, Post-hoc vs Intrinsic), Regulatory and Ethical Implications (GDPR, AI Bill of Rights), Model Simplicity vs Predictive Power.

UNIT II: Model-Specific Explainability Techniques

Decision Trees and Rule-based Models, Linear Models and Feature Importance, Generalized Additive Models (GAMs), Visualization of Weights and Coefficients, Logistic Regression Coefficient Interpretation, Case Study: Credit Scoring using Transparent Models, Comparison of Interpretable ML Models, Use Cases and Trade-offs.

UNIT III: Model-Agnostic Explainability Techniques

Local Interpretable Model-agnostic Explanations (LIME), SHAP Values (SHapley Additive exPlanations), Partial Dependence Plots (PDPs), Individual Conditional Expectation (ICE) Plots, Anchors and Counterfactual Explanations, Feature Interaction and Permutation Importance, Comparative Analysis of SHAP, LIME, PDP, Model Debugging with XAI.

UNIT IV: Deep Learning Explainability

Visualizing CNNs: Filters, Feature Maps, Saliency Maps and Grad-CAM, Integrated Gradients, Explaining RNNs and LSTM Outputs, Concept Activation Vectors (TCAV), Attention-based Interpretability in Transformers, Explaining Language Models (BERT, GPT) Evaluation of Deep Model Explanations.

UNIT V: Fairness, Bias & Tools for XAI

Fairness Metrics: Demographic Parity, Equal Opportunity, Sources of Bias in Data and Models, Discrimination Detection and Mitigation Strategies, Introduction to AIF360, What-If Tool, Fairlearn, Case Study: Bias in Hiring Algorithms, Explainability in ML Pipelines (MLFlow, Skater), XAI in Federated and Privacy-Preserving AI, Designing Interpretable AI Systems from Scratch.

Textbooks:

- 1. Christoph Molnar, "Interpretable Machine Learning", Leanpub.
- 2. Sameer Singh et al., "Explainable AI: Interpreting, Explaining and Visualizing Deep Learning", Springer.
- 3. Dan Roth, Zachary Lipton, and Been Kim, "Explainable AI: Foundations, Developments, Prospects", MIT Press (Online forthcoming).

Reference Books:

- 1. Marco Tulio Ribeiro et al., "Why Should I Trust You?" (LIME) Research Paper
- 2. Scott Lundberg et al., "A Unified Approach to Interpreting Model Predictions" (SHAP) NIPS
- 3. A. Barredo Arrieta et al., "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges", Information Fusion Journal.
- 4. Zachary C. Lipton, "The Mythos of Model Interpretability" Communications of the ACM

- Coursera Explainable AI with Google Cloud
- Udacity AI for Everyone by Andrew Ng
- HarvardX Data Science: Machine Learning Interpretability
- fast.ai Practical Deep Learning Courses
- InterpretableML Book (https://christophm.github.io/interpretable-ml-book/)
- Google PAIR: People + AI Research
- Microsoft Fairlearn Documentation

IV B.Tech I Semester

23A33701		L	T	P	C	
b	AI IN CYBERSECURITY (Professional Elective-IV)	3	0	0	3	

Course Objectives:

- To introduce the fundamental concepts of AI and their applications in cybersecurity.
- To understand AI-driven techniques for threat detection, classification, and mitigation.
- To explore machine learning and deep learning methods used for malware and intrusion detection.
- To equip students with skills in building intelligent security systems.
- To examine ethical, legal, and privacy aspects in AI-driven cybersecurity.

Course Outcomes:

- Understand AI principles and their relevance in cybersecurity.
- Apply machine learning techniques to detect and respond to threats.
- Analyze security incidents using intelligent tools and models.
- Evaluate and implement AI models for malware detection and anomaly analysis.
- Design AI-based cybersecurity frameworks for real-world scenarios.

UNIT I: Introduction to AI in Cybersecurity

Role of AI in Modern Cybersecurity, Overview of Cyber Threats and Attack Vectors, Fundamentals of Machine Learning for Security, AI vs Traditional Security Techniques, AI-Based Cyber Defense Lifecycle, Threat Intelligence with AI, Cybersecurity Data Types and Challenges, Case Studies of AI-Driven Attacks and Defenses

UNIT II: Machine Learning for Cyber Threat Detection

Supervised Learning for Intrusion Detection, Unsupervised Learning for Anomaly Detection, Feature Engineering from Network Traffic, Classification Algorithms: SVM, Decision Trees, Random Forests, Clustering Techniques: K-Means, DBSCAN, Ensemble Models and Model Evaluation Metrics, Real-Time Threat Detection Pipelines, Data Imbalance and Adversarial Sampling

UNIT III: Deep Learning in Cybersecurity

Neural Networks for Threat Classification, CNNs for Malware Detection from Binary Files, RNNs/LSTMs for Sequential Log Analysis, Autoencoders for Anomaly Detection, GANs in Malware Evasion and Defense, Transfer Learning for Threat Signature Extraction, Deep Learning vs Traditional Models: A Comparative Study, Real-World Use Cases and Limitations

UNIT IV: AI for Specific Security Domains

AI for Phishing and Spam Detection, AI in Cloud Security and Edge Devices, Botnet and DDoS Attack Detection, AI-Driven Endpoint Security, Natural Language Processing for Threat Intelligence, Behavioral Biometrics and Fraud Detection, AI in Social Engineering Attack Prevention, Security Information and Event Management (SIEM) with AI

UNIT V: Challenges, Ethics & Future of AI in Cybersecurity

Explainable AI (XAI) in Cybersecurity, Adversarial Attacks and Defenses in AI Systems, Data Privacy and Federated Learning, Legal and Ethical Issues in AI Security Solutions, AI Model Bias and Fairness in Security Decisions, Securing AI Models Against Manipulation, Building Scalable AI-Powered SOCs, Future Trends: Autonomous Security, AI-Augmented Threat Hunting

Textbooks:

- 1. Clarence Chio & David Freeman, "Machine Learning and Security", O'Reilly Media.
- 2. Xiaofeng Chen et al., "Artificial Intelligence and Big Data Analytics for Cybersecurity", Springer.
- 3. Mark Stamp, "Information Security: Principles and Practice", Wiley.

Reference Books:

- 1. Sumeet Dua & Xian Du, "Data Mining and Machine Learning in Cybersecurity", CRC Press.
- 2. Shai Shalev-Shwartz & Shai Ben-David, "Understanding Machine Learning", Cambridge University Press.
- 3. Zhiwei Lin & Yang Xiang, "Cyber Security Intelligence and Analytics", Springer.
- 4. Bhavani Thuraisingham, "Data Mining for Malware Detection", CRC Press.

Online Learning Resources:

- Coursera "AI for Cybersecurity" by University of Colorado
- Udemy "Machine Learning for Cybersecurity"

IV B.Tech I Semester

23A33701		L	T	P	C
C C	AI-DRIVEN SOFTWARE ENGINEERING & DEVOPS (Professional Elective-IV)	3	0	0	3

Course Objectives:

- 1. To introduce the principles and practices of AI-driven software engineering and DevOps.
- 2. To explore how AI techniques can automate and optimize software development workflows.
- 3. To study intelligent tools for code generation, testing, monitoring, and deployment.
- 4. To equip students with skills in AI-powered CI/CD pipelines and operations.
- 5. To foster an understanding of ethical implications and reliability in intelligent software systems.

Course Outcomes:

- 1. Understand AI's role in modern software development and operations.
- 2. Apply machine learning techniques to automate software engineering tasks.
- 3. Design and manage intelligent CI/CD and DevOps workflows.
- 4. Evaluate AI tools in software testing, refactoring, and monitoring.
- 5. Implement AI-based solutions for predictive maintenance and decision support in DevOps.

UNIT I: Foundations of AI in Software Engineering

Overview of Traditional vs AI-driven Software Development, AI Opportunities in Software Lifecycle Phases, Introduction to ML/DL Models in Engineering Tasks, Code Representation and Learning from Code, NLP for Source Code Understanding, Software Knowledge Graphs and Reasoning, Datasets and Benchmarks for Software Engineering AI, Case Studies of AI-Enhanced Development Tools

UNIT II: AI in Code Generation and Refactoring

Program Synthesis and Code Completion Models, Large Language Models (e.g., Codex, CodeBERT) in IDEs, Code Clone Detection and Automated Refactoring, Learning-Based Bug Detection and Code Smell Identification, AI in Software Architecture Recommendations, Embedding Techniques for Source Code, Prompt Engineering for Software Tasks, Reliability and Safety in Generated Code

UNIT III: Intelligent Testing, QA, and Debugging

Test Case Generation Using AI, Automated Unit Testing, Regression Testing with ML, Learning Bug Patterns from Repositories, AI-Based Static and Dynamic Code Analysis, Fault Localization and Automated Debugging, Quality Assurance Metrics Enhanced by AI, Reinforcement Learning for Test Prioritization, Ethics and Bias in AI-Driven Testing – (E)

UNIT IV: AI in DevOps Automation and CI/CD

DevOps Fundamentals and Integration with AI, Intelligent CI/CD Pipeline Design, Predictive Build Failure and Log Analysis, AI in Infrastructure-as-Code and Deployment Orchestration, Self-Healing Systems and AIOps Concepts, Log Analytics and Anomaly Detection in Production, AI in Monitoring, Tracing, and Feedback Loops, DevSecOps and AI for Security Automation

UNIT V: Advanced Topics and Ethical Considerations

Explainability and Transparency in AI-Driven Tools, Ethical and Legal Aspects in Automated Engineering, Human-AI Collaboration in Software Teams, Risk Management in Autonomous Code Deployment, AI for Technical Debt Prediction and Management, AI for Developer Productivity Analytics, Research Trends and Challenges in AI for SE, Capstone: Building a Smart DevOps Workflow

Textbooks:

- 1. Tim Menzies, Diomidis Spinellis, and Thomas Zimmermann, "Perspectives on Data Science for Software Engineering", Morgan Kaufmann.
- 2. André van der Hoek, Reid Holmes, "Software Engineering for Machine Learning", Springer.
- 3. Len Bass, Ingo Weber, Liming Zhu, "DevOps: A Software Architect's Perspective", Addison-Wesley.

Reference Books:

- 1. Carlos Eduardo Parnin et al., "AI for Software Engineering: Foundations, Advances, and Trends", Springer.
- 2. Luciano Baresi et al., "Machine Learning Techniques for Software Quality Evaluation", Springer.
- 3. Gene Kim, Jez Humble, and Nicole Forsgren, "Accelerate: The Science of Lean Software and DevOps", IT Revolution.

Online Learning Resources:

- Coursera "AI for Software Engineering" by DeepLearning.AI
- edX "DevOps for Developers" by Microsoft
- GitHub Copilot and OpenAI Codex documentation
- PapersWithCode AI for Software Engineering benchmarks
- MIT OCW "Software Systems" and "DevOps and CI/CD"
- Udemy "AI-Powered DevOps Pipelines and Automation"
- Google Cloud AIOps and MLOps tutorials

			L	T	P	C
23A3	33701d	AI for ROBOTICS (Professional Elective-IV)	3	0	0	3

Course Objectives:

- 1. To provide foundational knowledge in Generative AI and its core architectures.
- 2. To explore applications of generative models in text, image, and audio domains.
- 3. To equip students with hands-on experience in training and fine-tuning generative models.
- 4. To teach techniques for deploying AI models efficiently and securely in real-world settings.
- 5. To analyze the ethical, interpretability, and security concerns surrounding generative models.

Course Outcomes:

- 1. Understand and compare different generative architectures like GANs, VAEs, Transformers.
- 2. Build, fine-tune, and evaluate generative models for text, vision, and multimodal data.
- 3. Design secure and scalable workflows for model deployment (on cloud and edge).
- 4. Integrate monitoring, optimization, and feedback for deployed AI services.
- 5. Address ethical, interpretability, and regulatory aspects of model deployment.

UNIT I: Foundations of Generative AI

Introduction to Generative AI: Concepts, Use Cases, Types of Generative Models: GANs, VAEs, Diffusion, Autoregressive, Mathematical Foundations: Probabilistic Modeling & Latent Spaces, Generative Loss Functions: Adversarial Loss, KL Divergence, ELBO, Model Training Challenges: Mode Collapse, Posterior Collapse, Tools & Libraries: PyTorch, TensorFlow, Hugging Face Transformers, Evaluation Metrics: FID, BLEU, Perplexity, Case Studies of Generative AI Systems

UNIT II: Generative Modeling for Text, Images, and Audio

Transformer Models: GPT, T5, BERT for Text Generation, Vision Models: StyleGAN, DALL·E, Stable Diffusion, Audio Generation: WaveNet, Jukebox, Voice Cloning, Multi-modal Generation: CLIP, Flamingo, BLIP, Prompt Engineering & Controlled Generation, Fine-Tuning & LoRA Techniques, Evaluation Techniques for Generated Media, Comparison of Open vs Proprietary Foundation Models

UNIT III: Model Serving and Deployment Essentials

Overview of AI Deployment Pipelines, Model Packaging: ONNX, TorchScript, SavedModel, REST & gRPC API Serving using FastAPI, Flask, Triton Inference, Batch vs Real-time Inference, Asynchronous Processing, Containerization & Orchestration with Docker and Kubernetes, Cloud Deployment: AWS SageMaker, GCP Vertex AI, Azure ML, Cost Optimization and Resource Management, Edge AI: TinyML, Mobile Deployment using TensorFlow Lite, CoreML

UNIT IV: MLOps and Model Lifecycle Management

MLOps Lifecycle: Versioning, Experiment Tracking, CI/CD for ML: GitHub Actions, Jenkins, MLflow, Model Monitoring & Drift Detection, Logging and Metrics using Prometheus, Grafana, Auto-scaling and Load Balancing of Inference Services, Continuous Training and Feedback Loops, Model Governance and Audit Trails, Role of Explainability in Deployment

UNIT V: Challenges and Responsible Deployment

Interpretability of Generative Models, Security and Adversarial Attacks on Generative Models, Bias, Fairness, and Harmful Content Generation, Privacy-Preserving Techniques: Differential Privacy, Federated Learning, Ethical and Legal Frameworks for Generative AI, Open Source vs Proprietary Models: Deployment Implications, Responsible AI Guidelines & Compliance (GDPR, EU AI Act), Capstone: End-to-End Generative Model Deployment Project

Textbooks:

- 1. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, "Deep Learning", MIT Press.
- 2. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow", O'Reilly Media.
- 3. O'Reilly, "Generative Deep Learning" by David Foster.

Reference Books:

- 1. Packt Publishing, "Practical Deep Learning" by Ronald T. Kneusel.
- 2. "Transformers for Natural Language Processing" by Denis Rothman.
- 3. "Machine Learning Engineering" by Andriy Burkov.

Online Learning Resources:

- Coursera "Generative AI with Large Language Models" by DeepLearning.AI
- Hugging Face Course https://huggingface.co/learn
- Fast.ai "Practical Deep Learning for Coders"
- YouTube Full Stack Deep Learning by Berkeley AI
- AWS Machine Learning University Model Deployment
- TowardsDataScience and PapersWithCode Latest research & code repositories

		L	T	P	C
23A33702a	ML Ops & AI Model Deployment (Professional Elective-V)	3	0	0	3

Course Objective:

- To understand the principles and best practices of operationalizing machine learning models in production environments.
- To explore the life cycle of AI model development, deployment, monitoring, and maintenance using modern MLOps frameworks.
- To develop skills in CI/CD for ML, reproducibility, model versioning, and containerization using Docker and Kubernetes.
- To deploy machine learning models using cloud-native services and track their performance using real-time metrics.
- To address scalability, reliability, and ethical considerations in ML model deployment.

Course Outcomes:

After successful completion of this course, students will be able to:

- 1. Illustrate the lifecycle and pipeline components of MLOps and implement basic version control and orchestration for ML workflows.
- 2. Package ML models using appropriate tools and deploy them using Docker and Kubernetes environments with effective resource management.
- 3. Develop and deploy machine learning models as APIs using FastAPI/Flask and configure for real-time or batch inference scenarios.
- 4. Monitor and log ML systems using modern tools and detect data/model drift with strategies for continuous evaluation and feedback.
- 5. Implement end-to-end MLOps solutions using cloud platforms and CI/CD tools, and analyze deployment challenges in real-world use cases.

UNIT I: Introduction to MLOps and Deployment Pipelines

Definition and need of MLOps, ML system lifecycle and pipeline components, DevOps vs. MLOps: key differences, CI/CD for ML projects, Data versioning and model lineage, Introduction to DVC, Git, and MLFlow, Workflow orchestration using Apache Airflow, Automated testing in ML pipelines

UNIT II: Model Packaging and Environment Management

Packaging ML models using Pickle, Joblib, ONNX, Python virtual environments, Conda, Pipenv, Introduction to Docker for ML workloads, Building Dockerfiles for ML apps, Using Kubernetes for orchestration, Security, logging, and resource management, Docker Compose and Helm charts for deployment, Hands-on: Containerize and deploy a scikit-learn model

UNIT III: Model Serving and APIs

RESTful API design for ML models, Model deployment using FastAPI and Flask, TensorFlow Serving, TorchServe basics, Introduction to gRPC for ML deployment, Asynchronous inference and batch vs real-time serving, Load testing and benchmarking, Authentication and authorization in model APIs, Deploying models on edge devices

UNIT IV: Monitoring, Logging, and Continuous Evaluation

Importance of monitoring and alerting in MLOps, Data drift and model drift detection, Logging prediction results and metadata, Prometheus, Grafana, and ELK Stack, A/B testing and canary deployments, Shadow deployments and rollback strategies, Feedback loops for continuous learning, Integration with external monitoring tools.

UNIT V: Cloud-native MLOps and Case Studies

ML deployment on AWS SageMaker, Azure ML, Google AI Platform, CI/CD using GitHub Actions, Jenkins, and GitLab CI, AutoML and model registry, Real-world case study: End-to-end MLOps pipeline, Challenges and limitations in enterprise ML deployment, Responsible AI in production systems, Future trends in MLOps, Capstone Project Planning

Text Books:

- 1. Introducing MLOps: How to Scale Machine Learning Projects with DevOps Tools Mark Treveil, Alok Shukla, O'Reilly Media.
- 2. Machine Learning Engineering Andriy Burkov, TrueShelf Publishing.
- 3. Designing Machine Learning Systems Chip Huyen, O'Reilly Media.

Reference Books:

- 1. Practical MLOps Noah Gift, O'Reilly Media
- 2. Kubeflow for Machine Learning Trevor Grant et al., O'Reilly
- 3. Hands-On MLOps: Implement Machine Learning in Production Munn, Meza, Vohra, Packt Publishing
- 4. Research papers from arXiv, MLSys Conference, and ICML Industry Track

Online Courses:

- 1. Coursera MLOps Specialization by DeepLearning.AI
- 2. Google Cloud MLOps: Continuous Delivery and Automation Pipelines
- 3. Udemy MLOps: ML Pipelines, CI/CD, and Model Deployment
- 4. AWS Machine Learning Engineering for Production (MLOps)
- 5. Microsoft Learn MLOps with Azure ML

		L	T	P	C
23A30703a	Data Wrangling (Professional Elective-V)	3	0	0	3

Course Objectives:

- To introduce the fundamental techniques for acquiring, cleaning, transforming, and manipulating data.
- To enable students to handle real-world messy data for analysis and machine learning.
- To teach efficient use of libraries like Pandas, NumPy, and SQL for data wrangling.
- To promote understanding of handling missing values, outliers, and inconsistent formats.
- To expose students to automation, reproducibility, and workflow design in data preprocessing.

Course Outcomes:

After successful completion of this course, students will be able to:

- Understand and apply core data wrangling techniques.
- Clean, transform, and reshape data using Python and SQL.
- Handle missing values, data inconsistencies, and outliers.
- Merge and join multiple datasets from different sources.
- Automate data pipelines and preprocessing workflows for analytics and ML.

UNIT I: Introduction to Data Wrangling and Data Acquisition

Introduction to Data Wrangling: Importance and Use Cases, Types of Data: Structured, Semi-Structured, Unstructured, Data Acquisition Techniques: APIs, Web Scraping, Reading Data from CSV, Excel, JSON, XML, Using Python libraries: pandas, requests, BeautifulSoup, Working with Databases using SQLAlchemy and pandas, Loading Large Datasets and Chunking, Exploratory Analysis Before Cleaning.

UNIT II: Handling Missing, Noisy, and Inconsistent Data

Identifying and Understanding Missing Data, Techniques for Imputing Missing Values, Handling Inconsistent Data: Dates, Texts, Units, Removing Duplicates and Irrelevant Data, Detecting and Treating Outliers, Normalization and Standardization Techniques, Regular Expressions for Text Cleaning, Visualizing Missing/Outlier Data.

UNIT III: Data Transformation and Feature Engineering

Data Type Conversion and Parsing, Feature Extraction from Text, Dates, and Strings, One-Hot Encoding, Label Encoding, Binning and Discretization, Data Aggregation and Grouping, Pivoting, Melting, and Reshaping Data, Handling Imbalanced Data, Creating Derived Features and Feature Selection.

UNIT IV: Data Integration, Joining, and Workflows

Merging and Joining Datasets (Inner, Outer, Left, Right), Concatenation and Appending DataFrames, Data Consistency and Referential Integrity, Resolving Schema Mismatches, Designing Reusable Data Wrangling Functions, Automating Workflows with Functions and Pipelines, Data Lineage and Documentation, Case Study: End-to-End Data Wrangling Pipeline.

UNIT V: Tools, Libraries, and Case Studies in Data Wrangling

Pandas and NumPy Advanced Techniques, Pyjanitor, Dask, and Polars for Efficient Wrangling, Using OpenRefine for Data Cleaning, SQL vs NoSQL in Data Wrangling, Real-world Wrangling Case Studies (Finance, Healthcare, Retail), Best Practices and Common Pitfalls in Data Wrangling, Reproducibility and Versioning in Data Pipelines, Final Capstone: Build and Evaluate a Clean Dataset for ML.

Textbooks:

- 1. M. Heydt Data Wrangling with pandas, O'Reilly Media.
- 2. Hadley Wickham R for Data Science (Data Wrangling Chapters), O'Reilly.
- 3. J. VanderPlas Python Data Science Handbook, O'Reilly Media.

Reference Books:

- 1. Wes McKinney Python for Data Analysis, O'Reilly.
- 2. Cathy O'Neil and Rachel Schutt Doing Data Science, O'Reilly.
- 3. David Mertz Cleaning Data for Effective Data Science, Packt.

Online Learning Resources:

- Data Wrangling with pandas (Datacamp): https://www.datacamp.com/courses/datamanipulation-with-pandas
- Coursera: Data Wrangling, Analysis and AB Testing with SQL https://www.coursera.org/learn/data-wrangling-analysis-abtesting
- edX: Data Wrangling with R https://online.rice.edu/courses/data-wrangling-r
- Real Python Tutorials on pandas: https://realpython.com/learning-paths/pandas/
- Kaggle Notebooks (Data Cleaning & Wrangling): https://www.kaggle.com/learn/pandas

IV B.Tech I Semester

	Healthcare AI	L	T	P	C

23A33702b (Professional Elective-V)	3	0	0	3	
-------------------------------------	---	---	---	---	--

Course Objectives

- Introduce fundamental concepts and scalable algorithms used in mining massive datasets.
- Enable understanding of key techniques like clustering, classification, frequent itemset mining, and graph analysis on large-scale data.
- Familiarize students with distributed computing frameworks such as Hadoop and Spark.
- Provide practical insights into web and social network mining.
- Equip students with the ability to analyze massive datasets using real-world tools and platforms.

Course Outcomes

- Understand and explain the challenges involved in mining large-scale datasets.
- Apply efficient algorithms for clustering, classification, and association rule mining in big data environments.
- Analyze and implement scalable solutions using frameworks such as MapReduce, Hadoop, and Spark.
- Solve real-world problems involving link analysis, recommendation systems, and mining of web/social data.
- Critically evaluate algorithms based on scalability, efficiency, and effectiveness in large datasets.

UNIT I – Introduction to Massive Data and MapReduce Model

Types of Massive Data – Structured, Unstructured, and Semi-Structured, Challenges of Mining Massive Data Sets, Storage Systems – Distributed File Systems, HDFS, Introduction to MapReduce Programming Model, Designing MapReduce Algorithms, Matrix-Vector Multiplication by MapReduce, Workflow Management in Hadoop, Limitations of MapReduce.

UNIT II – Frequent Itemset and Association Rule Mining

Market Basket Model, A-Priori Algorithm – Scalable Variants, Handling Large Datasets in Frequent Pattern Mining, Park-Chen-Yu Algorithm, SON Algorithm, Multistage and Multihash Algorithms, PCY Algorithm and its Enhancements, Association Rules – Concepts and Evaluation, Finding Frequent Itemsets in Streaming Data

UNIT III – Clustering and Classification Techniques

Hierarchical and Partitional Clustering, K-Means Clustering and its Scalability, BFR and CURE Clustering Algorithms, Decision Trees and Rule-Based Classification, Naïve Bayes Classifier for Large Datasets, Logistic Regression and SVM for Massive Data, Parallel Clustering Techniques, Evaluation of Clustering Results

UNIT IV – Link Analysis and Mining of Web/Social Networks

Web Graph Structure and Crawling, PageRank and its Variants, Hubs and Authorities (HITS Algorithm), Link Spam Detection, Community Detection in Large Graphs, Mining Social Network Graphs, Recommendation Systems – User-Based and Item-Based Collaborative Filtering, Content-Based Filtering

UNIT V – Frameworks and Real-World Applications

Introduction to Apache Spark and RDDs, Spark MLlib for Data Mining, Streaming and Real-Time Data Analysis, Mining on Cloud Platforms (AWS, GCP, Azure), Case Study: E-commerce, Finance, and Healthcare, Scaling Algorithms to Petabyte-Level Data, Big Data Ethics and Governance, Research Trends in Mining Massive Data Sets

Textbooks

- 1. "Mining of Massive Datasets" by Jure Leskovec, Anand Rajaraman, and Jeffrey Ullman
- 2. "Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei
- 3. "Big Data: Principles and Best Practices of Scalable Real-Time Data Systems" by Nathan Marz and James Warren

Reference Books

- 1. "Big Data Analytics with Spark" by Mohammed Guller
- 2. "Hadoop: The Definitive Guide" by Tom White
- 3. "Practical Machine Learning with Spark" by Ajay Ohri
- 4. IEEE/ACM Journals and Conference Proceedings on Data Mining and Big Data

Online Courses

- 1. Mining Massive Datasets Stanford University (Coursera)
- 2. Big Data Analysis with Apache Spark edX (BerkeleyX)
- 3. Data Mining Specialization University of Illinois (Coursera)

	AI for Smart Cities & IoT Systems	L	T	P	C
23A33702c	(Professional Elective-V)	3	0	0	3

Course Objective:

- To introduce students to the integration of Artificial Intelligence and Internet of Things (IoT) technologies for developing smart city solutions.
- To understand the design, development, and deployment of intelligent systems to enhance urban infrastructure, transport, healthcare, energy, and governance.
- To explore edge and cloud computing techniques to optimize real-time AI-based decisions for IoT applications.
- To enable students to apply data analytics, computer vision, NLP, and automation to solve real-world urban challenges.
- To foster innovation using ethical AI frameworks in the context of sustainability, privacy, and smart governance.

Course Outcomes:

- Understand the architecture and components of smart cities powered by AI and IoT.
- Analyze and design AI-driven solutions for transportation, energy, healthcare, waste management, and smart governance.
- Deploy IoT systems that integrate sensors, edge devices, and AI models.
- Utilize AI algorithms (machine learning, NLP, and computer vision) for real-time smart city use cases.
- Evaluate and implement data-driven smart systems ensuring privacy, efficiency, and sustainability.
- Leverage cloud platforms and edge computing for scalable AIoT applications in urban environments.

Unit I: Introduction to AI in Smart Cities and IoT Systems

Smart City Concepts: Components, Infrastructure, and Urban Needs, Overview of IoT and AI Integration, Smart City Frameworks (India, Singapore, EU, etc.), IoT Architecture: Sensing, Network, Processing, and Application Layers, Role of AI in Urban Planning and Resource Optimization, Case Studies on AI in Smart Cities, Edge, Fog, and Cloud Computing Concepts for Smart Systems

Unit II: AI Applications in Smart Transportation and Mobility

Traffic Monitoring and Congestion Prediction using AI, Intelligent Traffic Signal Control using Reinforcement Learning, Autonomous Vehicles and AI Algorithms, Vehicle Detection and License Plate Recognition using CV, Public Transport Optimization using Predictive Analytics, Smart Parking and Navigation Systems, Use of Drones and AI for Traffic Surveillance

Unit III: AI and IoT for Smart Energy, Waste, and Water Management

AI for Smart Grids and Energy Consumption Prediction, Load Balancing and Demand Forecasting using ML, Waste Segregation and Collection Automation using CV, Water Quality Monitoring Systems using IoT Sensors, Leak Detection and Anomaly Detection Models, Smart Metering and Energy Theft Detection, Sustainability and Carbon Monitoring AI Models

Unit IV: Smart Healthcare, Surveillance, and Public Safety

IoT-based Health Monitoring and Alert Systems, Predictive Healthcare and Disease Outbreak Detection, AI for CCTV Surveillance, Crowd Monitoring, and Violence Detection, NLP for Emergency Response and Chatbot Assistance, Smart Ambulance Routing and Response Optimization, COVID-19 Contact Tracing and Monitoring via AI & IoT, Data Privacy, Security & Ethical Issues in Surveillance Systems

Unit V: AIoT System Design, Deployment, and Governance

AI Model Deployment on Edge Devices (Raspberry Pi, Jetson Nano), Smart City Dashboards and Data Visualization, Real-time Streaming and Analytics Platforms (Apache Kafka, Spark), Cloud Integration: AWS IoT, Google Cloud AI, Azure IoT Suite, Governance Frameworks, Data Privacy, and Policy Standards, Evaluation Metrics for Smart City Projects, Future Trends in AIoT and Smart Urban Living

Text Books:

- 1. Pethuru Raj & Anupama C. Raman, The Internet of Things: Enabling Technologies, Platforms, and Use Cases, CRC Press.
- 2. Janaka Ekanayake, Smart Grid: Technology and Applications, Wiley.
- 3. Rajkumar Buyya, Fog and Edge Computing: Principles and Paradigms, Wiley.
- 4. Adrian McEwen, Hakim Cassimally, Designing the Internet of Things, Wiley.

Reference Books:

- 1. Mahalik N. P., Sensor Networks and Applications, McGraw Hill.
- 2. Kim F. Taylor, Urban Artificial Intelligence and Governance, Springer.
- 3. Dastbaz, J. & Pattinson, C., Smart Cities: Innovation and Sustainability, Springer.
- 4. Research papers from IEEE Smart Cities, AIoT Journal, and Springer Urban Tech.

Online Courses:

- 1. Coursera Smart Cities: Management of Smart Urban Infrastructures (EPFL)
- 2. edX Internet of Things (IoT) Program Curtin University

IV B.Tech I Sem

22405702	PROMPT ENGINEERING	L	T	P	C
23A05703	Skill Enhancement Course	0	1	2	2

Course Objective:

This course delves into prompt engineering principles, strategies, and best practices, a crucial aspect in shaping AI models' behaviour and performance. Understanding Prompt Engineering is a comprehensive course designed to equip learners with the knowledge and skills to effectively generate and utilize prompts in natural language processing (NLP) and machine learning (ML) applications. This course delves into prompt engineering principles, strategies, and best practices, a crucial aspect in shaping AI models' behaviour and performance.

Course Out comes:

- Under standing the fundamentals and evolution of prompt engineering.
- Gaining the ability to craft effective closed-ended, open-ended, and role-based prompts.
- Learning to probe and stress-test AI models for bias and robustness.
- Applying prompt optimization techniques and performance evaluation methods.
- Mitigating bias and promoting ethical prompting practices in NLP/ML systems.

Module 1: Introduction to Prompt Engineering

- Lesson 1: Foundations of Prompt Engineering
 - o Overview of prompt engineering and its significance in NLP and ML.
 - o Historical context and evolution of prompt-based approaches.

Module 2: Types of Prompts and Their Applications

- Lesson 2: Closed-Ended Prompts
 - o Under standing and creating prompts for specific answers.
 - o Applications in question- answering systems.
- Lesson 3: Open-Ended Prompts
 - o Crafting prompts for creative responses.
 - o Applications in language generation models.

Module 3: Strategies for Effective Prompting

- *Lesson 4: Probing Prompts*
 - o Designing prompts to reveal model biases.
 - o Ethical considerations in using probing prompts.
- Lesson 5: Adversarial Prompts
 - o Creating prompts to stress-test models.
 - o Enhancing robustness through adversarial prompting.

Module 4: Fine-Tuning and Optimizing with Prompts

- Lesson 6: Fine-Tuning Models with Prompts
 - o Techniques for incorporating prompts during model training.
 - o Balancing prompt influence and generalization.
- Lesson 7: Optimizing Prompt Selection

- o Methods for selecting optimal prompts for specific tasks.
- o Customizing prompts based on model behavior.

Module 5: Evaluation and Bias Mitigation

- Lesson 8: Evaluating Prompt Performance
 - o Metrics and methodologies for assessing model performance with prompts.
 - o Interpreting and analyzing results.
- Lesson 9: Bias Mitigation in Prompt Engineering
 - o Strategies to identify and address biases introduced by prompts.
 - o Ensuring fairness and inclusivity in prompt-based models.

Module 6: Real-World Applications and Case Studies

- Lesson 10: Case Studies in Prompt Engineering
- Exploration of successful implementations and challenges in real-world scenarios.
- Guest lectures from industry experts sharing their experiences.

Text books:

- 1. "Prompt Engineering in Action" *Danny D. Sullivan*
- 2. "The Art of Prompt Engineering with Chat GPT: A Hands-On Guide" *Nathan Hunter*.

Reference Books:

- 1. "Prompt Engineering in Practice" Michael F. Lewis
- 2. "Mastering AI Prompt Engineering: The Ultimate Guide for Chat GPT Users" *Adriano Damiao*
- 3. "Writing AI Prompts For Dummies" *Stephanie Diamond and Jeffrey Allan*
- 4. "Prompt Engineering Guide" (Online Resource) promptingguide.ai

Online Resource link:

https://www.udemy.com/course/understanding-prompt-engineering/?couponCode=NVDINCTA35TRT

(Common to All Branches of Engineering)

R-23

Course Code	Gender Sensitization	L	T	P	C
23A52702		0	0	2	0

Pre-requisite Semester

Course Objectives:

- To enable students to understand the gender related issues, vulnerability of women and men
- To familiarize them about constitutional safeguard for gender equality
- To expose the students to debates on the politics and economics of work
- To help students reflect critically on gender violence
- To make them understand that gender identities and gender relations are part of culture
 as they shape the way daily life is lived in the family as well as wider community and
 the workplace.

Course Outcomes (CO):

COs	Statements	Blooms level						
CO1	Understand the basic concepts of gender and its related terminology							
COPde	ntify the biological, sociological, psychological and legal aspects of gender.	L1, L2						
CO3	CO3 Use the knowledge in understanding how gender discrimination works in our society and how to counter it.							
CO4	Analyzethe gendered division of labour and its relation to politics and economics.	L4						
CO5								
CO6	Develop students' sensibility with regard to issues of gender in contemporary India	L3						

SYLLABUS

Unit-1UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men - Preparing for Womanhood. Growing up Male. First lessons in Caste.

Unit-2GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles- Gender Roles and Relationships Matrix-Missing Women-Sex Selection and its Consequences- Declining Sex Ratio- Demographic Consequences-Gender Spectrum -

Unit-3GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction- Unrecognized and Unaccounted work -Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

Unit-4GENDER-BASED VIOLENCE

The Concept of Violence-Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment - Domestic Violence - Different forms of violence against women - Causes of violence, impact of violence against women - Consequences of gender-based violence

Unit-5GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Just Relationships

Prescribed Books

- 1. A.Suneetha, Uma Bhrugubanda, et al. *Towards a World of Equals: A Bilingual Textbook on Gender*", Telugu Akademi, Telangana, 2015.
- 2. Butler, Judith. *Gender Trouble: Feminism and the Subversion of Identity*. UK Paperback Edn. March 1990

Reference Books

- 1. Wtatt, Robin and Massood, Nazia, *Broken Mirrors: The dowry Problems in India*,London: Sage Publications, 2011
- 2. Datt, R. and Kornberg, J.(eds), *Women in Developing Countries*, *Assessing Strategies for Empowerment*, London: Lynne Rienner Publishers, 2002
- 3. Brush, Lisa D., Gender and Governance, New Delhi, Rawat Publication, 2007
- 4. Singh, Directi, Women and Politics World Wide, New Delhi, Axis Publications, 2010

5. Raj Pal Singh, Anupama Sihag, *Gender Sensitization: Issues and Challenges* (English, Hardcover), Raj Publications, 2019

6. A.Revathy& Murali, Nandini, *A Life in Trans Activism*(Lakshmi Narayan Tripathi). The University of Chicago Press, 2016

Online Resources:

1. Understanding Gender

chrome-extension://kdpelmjpfafjppnhbloffcjpeomlnpah/https://www.arvindguptatoys.com/arvindgupta/kamla-gender1.pdf

https://onlinecourses.swayam2.ac.in/nou24 hs53/preview

2. Gender Roles and Relations

https://www.plannedparenthood.org/learn/gender-identity/sex-gender-identity/what-are-gender-roles-and-stereotypes

https://www.verywellmind.com/understanding-gender-roles-and-their-effect-on-our-relationships-7499408

https://onlinecourses.swayam2.ac.in/cec23_hs29/preview

3. Gender and Labour

https://www.economicsobservatory.com/what-explains-the-gender-division-of-labour-and-how-can-it-be-redressed

https://onlinecourses.nptel.ac.in/noc23_mg67/preview

4. GENDER-BASED VIOLENCE

https://eige.europa.eu/gender-based-violence/what-is-gender-based-violence? language_content_entity=en

https://www.worldbank.org/en/topic/socialsustainability/brief/violence-against-women-and-girls

https://onlinecourses.swayam2.ac.in/nou25_ge38/preview

5. GENDER AND CULTURE

https://gender.study/psychology-of-gender/culture-impact-gender-roles-identities/

https://sociology.iresearchnet.com/sociology-of-culture/gender-and-culture/

https://archive.nptel.ac.in/courses/109/106/109106136/

Abdulali Sohaila. "I Fought For My Life...and Won." Available online (at: http://www.thealternative.in/lifestyle/i-fought-for-my-lifeand-won-sohaila-abdulal/

OPEN ELECTIVE

III B.Tech I Semester

Course Code	GREEN BUILDINGS	L	Т	P	С
23A01505a	(OPEN ELECTIVE - I)	3	0	0	3

Course Objectives:

The objectives of this course are to make the student:

- 1. **To understand** the fundamental concepts of green buildings, their necessity, and sustainable features.
- 2. **To analyze** green building concepts, rating systems, and their benefits in India.
- 3. **To apply** green building design principles, energy efficiency measures, and renewable energy sources.
- 4. **To evaluate** air conditioning systems, HVAC designs, and energy modeling for sustainable buildings.
- 5. **To assess** material conservation strategies, waste management, and indoor environmental quality in green buildings.

Course Outcomes (COs)

Upon successful completion of the course, students will be able to:

- 1. **Understand** the importance of green buildings, their necessity, and sustainable features.
- 2. **Analyze** various green building practices, rating systems, and their impact on environmental sustainability.
- 3. **Apply** principles of green building design to enhance energy efficiency and incorporate renewable energy sources.
- 4. **Evaluate** HVAC systems, energy-efficient air conditioning techniques, and their role in sustainable building design.
- 5. **Assess** material conservation techniques, waste reduction strategies, and indoor air quality management in green buildings.

CO - PO Articulation Matrix

GO TO THE CALLED THAT IN														
Course	PO	P	P	P	PS	PS								
Outco	1	2	3	4	5	6	7	8	9	O	0	0	O1	O 2
mes										10	11	12		
CO -1	3	-	-	-	-	2	3	-	-	-	-	-	3	3
CO -2	-	3	-	-	2	-	3	-	-	-	-	2	3	3
CO -3	-	-	3	3	3	-	3	-	-	-	-	-	3	3
CO -4	-	-	3	3	3	-	3	-	-	-	-	-	3	3
CO -5	-	-	-	-	-	3	3	3	2	-	-	-	-	3

UNIT – I

Introduction to Green Building— Necessity of Green Buildings, Benefits of Green Buildings, Green Building Materials and Equipment in India, Key Requisites for Constructing A Green Building, Important Sustainable Features for Green Buildings.

UNIT – II

Green Building Concepts and Practices—Indian Green Building Council, Green Building Movement in India, Benefits Experienced in Green Buildings, Launch of Green Building Rating Systems, Residential Sector, Market Transformation; Green Building Opportunities and Benefits: Opportunities of Green Buildings, Green Building Features, Material and Resources, Water Efficiency, Optimum Energy Efficiency, Typical Energy-Saving

Approaches in Buildings, LEED India Rating System, and Energy Efficiency.

UNIT - III

Green Building Design—Introduction, Reduction in Energy Demand, Onsite Sources and Sinks, Maximizing System Efficiency, Steps to Reduce Energy Demand and Use Onsite Sources and Sinks, Use of Renewable Energy Sources, Eco-Friendly Captive Power Generation for Factories, Building Requirements.

UNIT - IV

Air Conditioning— Introduction, CII Godrej Green Business Centre, Design Philosophy, Design Interventions, Energy Modeling, HVAC System Design, Chiller Selection, Pump Selection, Selection of Cooling towers, Selection of Air Handling Units, Pre-Cooling of Fresh Air, Interior Lighting Systems, Key Features of The Building, Eco-Friendly Captive Power Generation for Factories, Building Requirements.

UNIT - V

Material Conservation— Handling of Non-Process Waste, Waste Reduction During Construction, Materials With Recycled Content, Local Materials, Material Reuse, Certified Wood, Rapidly Renewable Building Materials and Furniture. Indoor Environment Quality and Occupational Health— Air Conditioning, Indoor Air Quality, Sick Building Syndrome, tobacco Smoke.

TEXT BOOKS:

- 1. Handbook on Green Practices published by Indian Society of Heating Refrigerating and Air conditioning Engineers, 2009.
- 2. Green Building Hand Book by tom woolley and Sam kimings, 2009.

REFRENCE BOOKS:

- 1. Complete Guide to Green Buildings by Trish riley
- **2.** Standard for the design for High Performance Green Buildings by Kent Peterson, 2009
- 3. Energy Conservation Building Code –ECBC-2020, published by BEE

Online Learning Resources:

https://archive.nptel.ac.in/courses/105/102/105102195/

III B.Tech - I Semester

Course Code	CONSTRUCTION	L	T	P	С
	TECHNOLOGY AND	3	0	0	3
23A01505B	MANAGEMENT				
	(OPEN ELECTIVE – I)				

Course Objectives:

The objectives of this course are to make the student :

- 1. To understand project management fundamentals, organizational structures, and leadership principles in construction.
- 2. To analyze manpower planning, equipment management, and cost estimation in civil engineering projects.
- 3. To apply planning, scheduling, and project management techniques such as CPM and PERT.
- 4. To evaluate various contract types, contract formation, and legal aspectsin construction management.
- 5. To assess safety management practices, accident prevention strategies, and quality management systems in construction.

Course Outcomes (COs):

Upon successful completion of the course, students will be able to:

- 1. Understand (Cos)project management fundamentals, organizational structures, and leadership principles in construction.
- 2. Analyze manpower planning, equipment management, and cost estimation in civil engineering projects.
- 3. Apply planning, scheduling, and project management techniques such as CPM and PERT.
- 4. Evaluate various contract types, contract formation, and legal aspectsin construction management.
- 5. Assess safety management practices, accident prevention strategies, and quality management systems in construction.

CO – PO Articulation Matrix

Course	PO	P	P	P	PS	PS								
Outco	1	2	3	4	5	6	7	8	9	0	0	0	O1	O 2
mes										10	11	12		
CO -1	3	-	-	-	-	2	-	2	2	-	-	-	3	3
CO -2	-	3	-	-	2	-	-	-	-	-	-	2	3	3
CO -3	-	-	3	3	3	-	-	-	-	2	-	-	3	3
CO -4	-	-	3	3	3	-	-	2	-	-	-	-	3	3
CO -5	-	-	-	-	-	3	3	3	2	-	-	-	-	3

UNIT - I

Introduction: Project forms, Management Objectives and Functions; Organizational Chart of A Construction Company; Manager's Duties and Responsibilities; Public Relations; Leadership and Team - Work; Ethics, Morale, Delegation and Accountability.

UNIT – II

Man and Machine: Man-Power Planning, Training, Recruitment, Motivation, Welfare Measures and Safety Laws; Machinery for Civil Engineering., Earth Movers and Hauling

Costs, Factors Affecting Purchase, Rent, and Lease of Equipment, and Cost Benefit Estimation.

UNIT - III

Planning, Scheduling and Project Management: Planning Stages, Construction Schedules and Project Specification, Monitoring and Evaluation; Bar-Chart, CPM, PERT, Networkformulation and Time Computation.

UNIT - IV

Contracts: Types of Contracts, formation of Contract – Contract Conditions – Contract forLabour, Material, Design, Construction – Drafting of Contract Documents Based On IBRD/ MORTH Standard Bidding Documents – Construction Contracts – Contract Problems – Arbitration and Legal Requirements Computer Applications in Construction Management: Software for Project Planning, Scheduling and Control.

UNIT - V

Safety Management – Implementation and Application of QMS in Safety Programs, ISO 9000 Series, Accident Theories, Cost of Accidents, Problem Areas in Construction Safety, Fall Protection, Incentives, Zero Accident Concepts, Planning for Safety, Occupational Health and Ergonomics.

TEXT BOOKS:

- 1. Construction Project Management, SK. Sears, GA. Sears, RH. Clough, John Wiley and Sons, 6th Edition, 2016.
- 2. Construction Project Scheduling and Control by Saleh Mubarak, 4th Edition, 2019
- 3. Pandey, I.M (2021) Financial Management 12th edition. Pearson India Education Services Pvt. Ltd.

REFRENCE BOOKS:

- 1. Brien, J.O. and Plotnick, F.L., CPMin Construction Management, Mcgraw Hill, 2010.
- 2. Punmia, B.C., andKhandelwal, K.K., Project Planning and control with PERT and CPM, Laxmi Publications, 2002.
- 3. Construction Methods and Management: Pearson New International Edition 8 th Edition Stephens Nunnally.
- 4. Rhoden, M and Cato B, Construction Management and Organisational Behaviour, Wiley-Blackwell, 2016.

Online Learning Resources:

https://archive.nptel.ac.in/courses/105/104/105104161/https://archive.nptel.ac.in/courses/105/103/105103093/

III B.Tech I Semester

L	T	P	С
3	0	0	3

23AA0505 ELECTRICAL SAFETY PRACTICES AND STANDARDS (Open Elective-I)

Course Outcomes:

CO1: Understanding the Fundamentals of Electrical Safety -L2

CO2: Identifying and Applying Safety Components -L3

CO3: Analyzing Grounding Practices and Electrical Bonding

CO4: Applying Safety Practices in Electrical Installations and Environments- L4

CO5: Evaluating Electrical Safety Standards and Regulatory Compliance -L5

UNIT I Introduction To Electrical Safety:

Fundamentals of Electrical safety-Electric Shock- physiological effects of electric current - Safety requirements –Hazards of electricity- Arc - Blast- Causes for electrical failure.

UNIT II Safety Components:

Introduction to conductors and insulators- voltage classification -safety against over voltages- safety against static electricity-Electrical safety equipment's - Fire extinguishers for electrical safety.

UNIT III Grounding:

General requirements for grounding and bonding- Definitions- System grounding-Equipment grounding - The Earth - Earthing practices- Determining safe approach distance-Determining arc hazard category.

UNIT IV Safety Practices:

General first aid- Safety in handling hand held electrical appliances tools- Electrical safety in train stations-swimming pools, external lighting installations, medical locations-Case studies.

UNIT V Standards For Electrical Safety:

Electricity Acts- Rules & regulations- Electrical standards-NFPA 70 E-OSHA standards-IEEE standards-National Electrical Code 2005 — National Electric Safety code NESC-Statutory requirements from electrical inspectorate

TEXT BOOKS:

- 1. Massimo A.G.Mitolo, "Electrical Safety of Low-Voltage Systems", McGraw Hill, USA, 2009.
- 2. Mohamed El-Sharkawi, "Electric Safety Practice and Standards", CRC Press, USA, 2014

REFERENCES:

- 1. Kenneth G.Mastrullo, Ray A. Jones, "The Electrical Safety Program Book", Jones and Bartlett Publishers, London, 2nd Edition, 2011.
- 2. Palmer Hickman, "Electrical Safety-Related Work Practices", Jones & Bartlett Publishers, London, 2009.
- 3. Fordham Cooper, W., "Electrical Safety Engineering", Butterworth and Company, London, 1986.
- 4. John Cadick, Mary Capelli-Schellpfeffer, Dennis K. Neitzel, "Electrical Safety Hand book, McGraw-Hill, New York, USA, 4th edition, 2012.

III B.Tech – I Sem

L T P C 3 0 0 3

23A03505 SUSTAINBLE ENERGY TECHNOLOGIES (Open Elective-I)

	Course objectives: The objectives of the course are to
1To	demonstrate the importance the impact of solar radiation, solar PVmodules
2To	understand the principles of storage in PV systems
3To	discuss solar energy storage systems and their applications.
4To	get knowledge in wind energy and bio-mass
5To	gain insights in geothermal energy, ocean energy and fuel cells.

CO	COURSE OUTCOMES On successful completion of this course the student will be able to								
CO1	Illustrate the importance of solar radiation and solar PV modules.								
CO2	Discuss the storage methods in PV systems	L2,L3							
CO3	Explain the solar energy storage for different applications	L2,L3							
CO4	Understand the principles of wind energy, and bio-mass energy.	L2, L3							
CO5	Attain knowledge in geothermal energy, ocean energy and fuel cells.	L1, L2,L3, L4							

UNIT - 1

SOLAR RADIATION: Role and potential of new and renewable sources, the solar energy option, Environmental impact of solar power, structure of the sun, the solar constant, sun-earth relationships, coordinate systems and coordinates of the sun, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data, numerical problems.

SOLAR PV MODULES AND PV SYSTEMS:

PV Module Circuit Design, Module Structure, Packing Density, Interconnections, Mismatch and Temperature Effects, Electrical and Mechanical Insulation, Lifetime of PV Modules, Degradation and Failure, PV Module Parameters, Efficiency of PV Module, Solar PV Systems-Design of Off Grid Solar Power Plant. Installation and Maintenance.

UNIT - 2

STORAGE IN PV SYSTEMS:

Battery Operation, Types of Batteries, Battery Parameters, Application and Selection of Batteries for Solar PV System, Battery Maintenance and Measurements, Battery Installation for PV System.

UNIT - 3

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation.

SOLAR ENERGY STORAGE AND APPLICATIONS: Different methods, sensible, latent heat and stratified storage, solar ponds, solar applications- solar heating/cooling technique, solar distillation and drying, solar cookers, central power tower concept and solar chimney.

UNIT – 4

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, betz criteria, types of winds, wind data measurement.

BIO-MASS: Principles of bio-conversion, anaerobic/aerobic digestion, types of bio-gas digesters, gas yield, utilization for cooking, bio fuels, I.C. engine operation and economic aspects.

UNIT - 5

GEOTHERMAL ENERGY: Origin, Applications, Types of Geothermal Resources, Relative Merits

OCEAN ENERGY: Ocean Thermal Energy; Open Cycle & Closed Cycle OTEC Plants, Environmental Impacts, Challenges

FUEL CELLS: Introduction, Applications, Classification, Different Types of Fuel Cells Such as Phosphoric Acid Fuel Cell, Alkaline Fuel Cell, PEM Fuel Cell, MC Fuel Cell.

Text Books:

- 1. Solar Energy Principles of Thermal Collection and Storage/Sukhatme S.P. and J.K.Nayak/TMH
- 2. Non-Conventional Energy Resources- Khan B.H/ Tata McGraw Hill, New Delhi, 2006

References:

- 1. Principles of Solar Engineering D.Yogi Goswami, Frank Krieth& John F Kreider / Taylor &Francis
- 2. Non-Conventional Energy Ashok V Desai /New Age International (P) Ltd
- 3. Renewable Energy Technologies -Ramesh & Kumar /Narosa
- 4. Non-conventional Energy Source- G.D Roy/Standard Publishers

Online Learning Resources:

https://nptel.ac.in/courses/112106318

 $\underline{https://youtube.com/playlist?list=PLyqSpQzTE6M-ZgdjYukayF6QevPv7WE-r\&si=-mwIa2X-SuSiNy13}$

https://youtube.com/playlist?list=PLyqSpQzTE6M-ZgdjYukayF6QevPv7WE-r&si=Apfjx6oDfz1Rb_N3

https://youtu.be/zx04Kl8y4dE?si=VmOvp OgqisILTAF

III B.Tech I Sem L-T-P-C3-0-0-3

23A04505

ELECTRONIC CIRCUITS (Open Elective –I)

Course Objectives:

- 1. To understand semiconductor diodes, their characteristics and applications.
- 2. To explore the operation, configurations, and biasing of BJTs.
- 3. To study the operation, analysis, and coupling techniques of BJT amplifiers.
- 4. To learn the operation, applications and uses of feedback amplifiers and oscillators.
- 5. To analyze the characteristics, configurations, and applications of operational amplifiers.

Course Outcomes:

At the end of this course, the students will be able to

- 1. Understand semiconductor diodes, their characteristics and applications.
- 2. Explore the operation, configurations, and biasing of BJTs.
- 3. Gain knowledge about the operation, analysis, and coupling techniques of BJT amplifiers.
- 4. Learn the operation, applications and uses of feedback amplifiers and oscillators.
- 5. Analyze the characteristics, configurations, and applications of operational amplifiers.

UNIT-I

Semiconductor Diode and Applications: Introduction, PN junction diode – structure, operation and VI characteristics, Half-wave, Full-wave and Bridge Rectifiers with and without Filters, Positive and Negative Clipping and Clamping circuits (Qualitative treatment only).

Special Diodes: Zener and Avalanche Breakdowns, VI Characteristics of Zener diode, Zener diode as voltage regulator, Construction, operation and VI characteristics of Tunnel Diode, LED, Varactor Diode, Photo Diode .

UNIT-II

Bipolar Junction Transistor (BJT): Principle of Operation, Common Emitter, Common Base and Common Collector Configurations, Transistor as a switch and Amplifier, Transistor Biasing and Stabilization - Operating point, DC & AC load lines, Biasing - Fixed Bias, Self Bias, Bias Stability, Bias Compensation using Diodes.

UNIT-III

Single stage amplifiers: Classification of Amplifiers - Distortion in amplifiers, Analysis of CE, CC and CB configurations with simplified hybrid model.

Multistage amplifiers: Different Coupling Schemes used in Amplifiers - RC coupled amplifiers, Transformer Coupled Amplifier, Direct Coupled Amplifier; Multistage RC coupled BJT amplifier (Qualitative treatment only).

UNIT-IV

Feedback amplifiers: Concepts of feedback, Classification of feedback amplifiers, Effect of feedback on amplifier characteristics, Voltage Series, Voltage Shunt, Current Series and Current Shunt Feedback Configurations (Qualitative treatment only).

Oscillators: Classification of oscillators, Condition for oscillations, RC Phase shift Oscillators, Generalized analysis of LC Oscillators-Hartley and Colpitts Oscillators, Wien Bridge Oscillator.

UNIT-V

Op-amp: Classification of IC'S, basic information of Op-amp, ideal and practical Op-amp, 741 op-amp and its features, modes of operation-inverting, non-inverting, differential.

Applications of op-amp : Summing, scaling and averaging amplifiers, Integrator, Differentiator, phase shift oscillator and comparator.

TEXT BOOKS:

- 1. Electronics Devices and Circuits, J.Millman and Christos. C. Halkias, 3rd edition, Tata McGraw Hill, 2006.
- 2. Electronics Devices and Circuits Theory, David A. Bell, 5th Edition, Oxford University press. 2008.

REFERENCE BOOKS:

- 1. Electronics Devices and Circuits Theory, R.L.Boylestad, LousisNashelsky and K.Lal Kishore, 12th edition, 2006, Pearson, 2006.
- 2. Electronic Devices and Circuits, N.Salivahanan, and N.Suresh Kumar, 3rd Edition, TMH, 2012
- 3. Microelectronic Circuits, S.Sedra and K.C.Smith, 5th Edition, Oxford University Press.

III B.Tech I Sem

L	T	P	C
3	0	0	3

23A54501 MATHEMATICS FOR MACHINE LEARNING AND AI (Open Elective 1)

Course Objectives:

- To provide a strong mathematical foundation for understanding and developing AI/ML algorithms.
- To enhance the ability to apply linear algebra, probability, and calculus in AI/ML models.
- To equip students with optimization techniques and graph-based methods used in AI applications.
- To develop critical problem-solving skills for analysing mathematical formulations in AI/ML.

Course Outcomes:

After successful completion of this course, the students should be able to:

COs	Statements	Blooms level
CO1	Apply linear algebra concepts to ML techniques like PCA and regression.	L3 (Apply)
CO2	Analyze probabilistic models and statistical methods for AI applications.	L4 (Analyze)
CO3	Implement optimization techniques for machine learning algorithms.	L3 (Apply)
CO4	Utilize vector calculus and transformations in AI-based models.	L3 (Apply)
CO5	Develop graph-based AI models using mathematical representations.	L5 (Evaluate)

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3	2	2	1	-	-	-	-	-	-	1
CO 2	3	3	2	3	2	-	-	-	-	-	-	2
CO 3	3	З	3	3	2	1	-	-	-			2
CO 4	3	З	2	2	1	1	-	-	-			1
CO 5	3	3	3	3	2	-	-	_	-	-		2

^{• 3 =} Strong Mapping, 2 = Moderate Mapping, 1 = Slight Mapping, - = No Mapping

UNIT I: Linear Algebra for Machine Learning(08)

Review of Vector spaces, basis, linear independence, Vector and matrix norms, Matrix factorization techniques, Eigenvalues, eigenvectors, diagonalization, Singular Value Decomposition (SVD) and Principal Component Analysis (PCA).

UNIT II: Probability and Statistics for AI(08)

Probability distributions: Gaussian, Binomial, Poisson. Bayes' Theorem, Maximum Likelihood Estimation (MLE), and Maximum a Posteriori (MAP). Entropy and Kullback-Leibler (KL) Divergence in AI, Cross entropy loss, Markov chains.

UNIT III: Optimization Techniques for ML(08)

Multivariable calculus: Gradients, Hessians, Jacobians. Constrained optimization: Lagrange multipliers and KKT conditions. Gradient Descent and its variants (Momentum, Adam) Newton's method, BFGS method.

UNIT IV: Vector Calculus & Transformations(08)

Vector calculus: Gradient, divergence, curl. Fourier Transform & Laplace Transform in ML applications.

UNIT V: Graph Theory for AI(08)

Graph representations: Adjacency matrices, Laplacian matrices. Bayesian Networks & Probabilistic Graphical Models. Introduction to Graph Neural Networks (GNNs).

Textbooks:

- 1. Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Cambridge University Press, 2020.
- 2. Pattern Recognition and Machine Learningby Christopher Bishop, Springer.

Reference Books:

- 1. Gilbert Strang, Linear Algebra and Its Applications, Cengage Learning, 2016.
- 2. Jonathan Gross, Jay Yellen, Graph Theory and Its Applications, CRC Press, 2018.

Web References:

- MIT- Mathematics for Machine Learning https://ocw.mit.edu
- Stanford CS229 Machine Learning Course https://cs229.stanford.edu/

DeepAI – Mathematical Foundations for AI https://deepai.org

III B.Tech I Sem

	MATERIALS CHARACTERIZATION TECHNIQUES	Credits
23A56501	(Common to all branches) (Open Elective-Interdisciplinary)	3-0-0:3
	(Open Elective-I)	

	COURSE OBJECTIVES
1	To provide exposure to different characterization techniques.
2	To explain the basic principles and analysis of different spectroscopic techniques.
3	To elucidate the working of Scanning electron microscope - Principle, limitations and applications.
4	To illustrate the working of the Transmission electron microscope (TEM) - SAED patterns and its applications.
5	To educate the uses of advanced electric and magnetic instruments for characterization.

UNIT I Structure analysis by Powder X-Ray Diffraction

9H

Introduction, Bragg's law of diffraction, Intensity of Diffracted beams, Factors affecting Diffraction, Intensities, Structure of polycrystalline Aggregates, Determination of crystal structure, Crystallite size by Scherer and Williamson-Hall (W-H) Methods, Small angle X-ray scattering (SAXS) (in brief).

UNIT II Microscopy technique -1 –Scanning Electron Microscopy (SEM) 9H

Introduction, Principle, Construction and working principle of Scanning Electron Microscopy, Specimen preparation, Different types of modes used (Secondary Electron and Backscatter Electron), Advantages, limitations and applications of SEM.

UNIT III Microscopy Technique -2 - Transmission Electron Microscopy (TEM) 9H

Construction and Working principle, Resolving power and Magnification, Bright and dark fields, Diffraction and image formation, Specimen preparation, Selected Area Diffraction, Applications of Transmission Electron Microscopy, Difference between SEM and TEM, Advantage and Limitations of Transmission Electron Microscopy

UNIT IV Spectroscopy techniques

Principle, Experimental arrangement, Analysis and advantages of the spectroscopic techniques – (i) UV-Visible spectroscopy (ii) Raman Spectroscopy, (iii) Fourier Transform infrared (FTIR) spectroscopy, (iv) X-ray photoelectron spectroscopy (XPS).

UNIT V Electrical & Magnetic Characterization techniques

9H

Electrical Properties analysis techniques (DC conductivity, AC conductivity) Activation Energy, Effect of Magnetic field on the electrical properties (Hall Effect). Magnetization measurement by induction method, Vibrating sample Magnetometer (VSM) and SQUID.

Textbooks:

- 1. Material Characterization: Introduction to Microscopic and Spectroscopic Methods Yang Leng John Wiley & Sons (Asia) Pvt. Ltd. 2013.
- 2. Microstructural Characterization of Materials David Brandon, Wayne D Kalpan, John Wiley & Sons Ltd., 2008

Reference Books:

- 1. Fundamentals of Molecular Spectroscopy IV Ed. Colin Neville BanwellandElaine M. McCash, Tata McGraw-Hill, 2008.
- 2. Elements of X-ray diffraction Bernard Dennis Cullity& Stuart R Stocks, Prentice Hall , 2001 Science.
- 3. Practical Guide to Materials Characterization: Techniques and Applications Khalid Sultan Wiley 2021.
- Materials Characterization Techniques Sam Zhang, Lin Li, Ashok Kumar CRC Press - 2008

NPTEL courses link:

- 1. https://nptel.ac.in/courses/115/103/115103030/
- 2. https://nptel.ac.in/content/syllabus_pdf/113106034.pdf
- 3. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-mm08/

	Course Outcomes	Blooms Level
CO1	Analyze the crystal structure and crystallite size by various methods	L1,L2, L3, L4
CO2	Analyze the morphology of the sample by using a Scanning Electron Microscope	L1,L2, L4
CO3	Analyze the morphology and crystal structure of the sample by using Transmission Electron Microscope	L1,L2, L3
CO4	Explain the principle and experimental arrangement of various spectroscopic techniques	L1,L2
CO5	Identify the construction and working principle of various Electrical & Magnetic Characterization technique	L1,L2

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1							
CO2	3	3	2	1	1							
CO3	3	3	2	1	1							
CO4	3	2	1	1	-							

CO ₅	3	3	1	1	-				

1-Slightly, 2-Moderately, 3-Substantially.

III B.Tech I Sem

Course Code	Title of the Subject	L	T	P	С
23A51501	CHEMISTRY OF ENERGY SYSTEMS	3		-	3

	COURSE OBJECTIVES						
1	To make the student understand basic electrochemical principles such as standard electrode						
_ 1	potentials, emf and applications of electrochemical principles in the design of batteries.						
2	To understand the basic concepts of processing and limitations of Fuel cells & their						
	applications.						
3	To impart knowledge to the students about fundamental concepts of photo chemical cells,						
	reactions and applications						
4	Necessarily of harnessing alternate energy resources such as solar energy and its basic						
4	concepts.						
5	To impart knowledge to the students about fundamental concepts of hydrogen storage in						
) 3	different materials and liquification method.						

		COURSE OUTCOMES
	>	Solve the problems based on electrode potential, Describe the Galvanic Cell
CO1	>	Differentiate between Lead acid and Lithium ion batteries, Illustrate the
		electrical double layer
CO2	>	Describe the working Principle of Fuel cell, Explain the efficiency of the fuel cell
CO2	>	Discuss about the Basic design of fuel cells, Classify the fuel cell
	>	Differentiate between Photo and Photo electrochemical Conversions,
CO3		Illustrate the photochemical cells, Identify the applications of photochemical reactions,
	>	Interpret advantages of photoelectron catalytic conversion.
CO4	>	Apply the photo voltaic technology, Demonstrate about solar energy and prospects
CO4	>	Illustrate the Solar cells, Discuss about concentrated solar power
	~	Differentiate Chemical and Physical methods of hydrogen storage, Discuss the metal
CO5		organic frame work, Illustrate the carbon and metal oxide porous structures
LO3	>	Describe the liquification methods.

Mapping between Course Outcomes and Programme Outcomes

	PO1	PO2	РО3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1												
CO2												
CO3												
CO4												

CO5						

UNIT-1: Electrochemical Systems: Galvanic cell, Nernst equation, standard electrode potential, application of EMF, electrical double layer, polarization, Batteries-Introduction, Lead-acid, Nickel- cadmium, Lithium ion batteries and their applications.

UNIT-2: Fuel Cells: Fuel cell- Introduction, Basic design of fuel cell, working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency and applications.

UNIT-3: Photo and Photo electrochemical Conversions: Photochemical cells Introduction and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions and their applications.

UNIT-4: Solar Energy: Introduction and prospects, photovoltaic (PV) technology, concentrated solar power (CSP), Solar cells and applications.

UNIT-5: Hydrogen Storage: Hydrogen storage and delivery: State-of-the art, Established technologies, Chemical and Physical methods of hydrogen storage, Compressed gas storage, Liquid hydrogen storage, Other storage methods, Hydrogen storage in metal hydrides, metal organic frameworks (MOF), Metal oxide porous structures, hydrogel, and Organic hydrogen carriers.

Text books

- 1. Physical chemistry by Ira N. Levine
- 2. Essentials of Physical Chemistry, Bahl and Bahl and Tuli.
- 3. Inorganic Chemistry, Silver and Atkins

Reference Books:

1. Fuel Cell Hand Book 7^{th} Edition, by US Department of Energy (EG&G technical services

And corporation)

- 2. Hand book of solar energy and applications by ArvindTiwari and Shyam.
- 3. Solar energy fundamental, technology and systems by Klaus Jagar et.al.
- 4. Hydrogen storage by Levine Klebonoff

III B.Tech I Sem

Course Code	ENGLISH FOR COMPETITIVE EXAMINATIONS	L	Т	P	С
23A52502A	(Open Elective-I)	3	0	0	3
25A52502A	(Common to All Branches of Engineering)	3	0	0	3
Course Objectives:	(Common to 7th Brunenes of Engineering)				
	the students to learn about the structure of competitive English				
	and the grammatical aspects and identify the errors				
	e verbal ability and identify the errors				
	e word power to answer competitive challenges				
	nem ready to crack competitive exams				
	•				
Course Outcomes (ns Leve	l		
	ogram students will be able to				
	basics of English grammar and its importance		L2		
Explain the	use of grammatical structures in sentences	L1,	, L2		
 Demonstrat 	e the ability to use various concepts in grammar and voc	cabular	y and	their	
applications	in everyday use and in competitive exams		L3		
 Analyze an 	unknown passage and reach conclusions about it.		L4		
Choose the	appropriate form of verbs in framing sentences		L5		
 Develop spe 	eed reading and comprehending ability thereby perform be	ter in c	compet	itive	
exams					
	L3				
UNIT - I	GRAMMAR-1	Lect	ure Hrs	6	
	n-errors-Pronouns-types-errors-Adjectives-types-errors-Articles-d	efinite-i	ndefini	te-Deg	rees of
	bs-types- errors-Conjunctions-usage-				
Prepositions-usage-	Tag Questions, types-identifying errors- Practice				
UNIT - II	GRAMMAR-2	Lect	ure Hrs	<u> </u>	
Verbs-tenses- struc	ture-usages- negatives- positives- time adverbs-Sequence of te	nsesIf	Clause	e-Voice	-active
voice and passive v	oice- reported Speech-Agreement- subject and verb-Modals-Spott	ing Erro	ors-Prac	ctices	
UNIT - III	VERBAL ABILITY	Lect	ure Hrs	<u> </u>	
	on-Verbal analogies-Word groups-Instructions-Critical reason				-Select
	ading Comprehension-Paragraph-Jumbles-Selecting the proper s				
paragraph.			5		O
UNIT - IV	READING COMPREHENSION AND VOCUBULARY		ure Hrs		
	ulary: Word Building - Memory techniques-Synonyms, Antony				
	utes-Compound words-Phrasal Verbs-Idioms and Phrases-Ho	_		_	
	ers - Mastering Competitive Vocabulary- Cracking the unkno	wing pa	assage-	speed 1	reading
techniques- Skimmi	ing & Scanning-types of answering–Elimination methods				
UNIT - V	WRITING FOR COMPETITIVE EXAMINATIONS	Lect	ure Hrs	<u> </u>	
	ng rules- Word order-Sub Skills of Writing- Paragraph meaning-				- Note-
	g, summarizing-precise writing- Paraphrasing-Expansion of prove				
Textbooks:					
1. Wren &	Martin, English for Competitive Examinati	ons,	S.Ch	and	Sc

Co, 2021

2. Objective English for Competitive Examination, Tata McGraw Hill, New Delhi, 2014.

Reference Books:

- 1. Hari Mohan Prasad, *Objective English for Competitive Examination*, Tata McGraw Hill, New Delhi, 2014.
- 2. Philip Sunil Solomon, English for Success in Competitive Exams, Oxford 2016
- 3. Shalini Verma, Word Power Made Handy, S Chand Publications
- 4. Neira, Anjana Dev & Co. *Creative Writing: A Beginner's Manual*. Pearson Education India, 2008.
- 5. Abhishek Jain, Vocabulary Learning Techniques Vol. I&II, RR Global Publishers 2013.
- 6. Michel Swan, Practical English Usage, Oxford, 2006.

Online Resources

- 1. https://www.grammar.cl/english/parts-of-speech.htm
- 2. https://academicguides.waldenu.edu/writingcenter/grammar/partsofspeech
- 3. https://learnenglish.britishcouncil.org/grammar/english-grammar-reference/active-passive-voice
- 4. https://languagetool.org/insights/post/verb-tenses/
- 5. https://www.britishcouncil.in/blog/best-free-english-learning-resources-british-council
- 6. https://www.careerride.com/post/social-essays-for-competitive-exams-586.aspx

Course Code	ENTREPRENEURSHIP AND NEW VENTURE	L	T	P	С
	CREATION				
23A52502B		3	0	0	3
	(Open Elective-I)				

COURSE	OBJECTIVES: The objectives of this course are
1	To foster an entrepreneurial mind-set for venture creation and intrapreneurial leadership.
2	To encourage creativity and innovation
3	To enable them to learn pitching and presentation skills
4	To make the students understand MVP development and validation techniques to determine
	Product-Market fit and Initiate Solution design, Prototype for Proof of Concept.
	1 Todact Market III and Initiate Solution design, 1 Tototype for 1 Tool of Concept.
5	To enhance the ability of analyzing Customer and Market segmentation, estimate Market size,
]	
	develop and validate Customer Persona

UNIT-I: Entrepreneurship Fundamentals and context

Meaning and concept, attributes and mindset of entrepreneurial and intrapreneurial leadership, role models in each and their role in economic development. An understanding of how to build entrepreneurial mindset, skill sets, attributes and networks while on campus.

Core Teaching Tool: Simulation, Game, Industry Case Studies (Personalized for students – 16industries to choose from), Venture Activity

LEARNING OUTCOMES

At the end of the Unit, the learners will be able to

- ➤ Understand the concept of Entrepreneur and Entrepreneurship in India
- ➤ Analyze recent trends in Entrepreneurship role in economic development
- > Develop a creative mind set and personality in starting a business.

Unit II: Problem & Customer Identification

Understanding and analysing the macro-Problem and Industry perspective - technological, socioeconomic and urbanization trends and their implication on new opportunities - Identifying passion - identifying and defining problem using Design thinking principles - Analysing problem and validating with the potential customer - Understanding customer segmentation, creating and validating customer personas.

Core Teaching Tool: Several types of activities including Class, game, Gen AI, 'Get out of the Building' and Venture Activity.

LEARNING OUTCOMES

At the end of the Unit, the learners will be able to

Understand the problem and Customer identification.

- ➤ Analyze problem and validating with potential customer
- ➤ Evaluate customer segmentation and customer personas

Unit III: Solution design, Prototyping & Opportunity Assessment and Sizing

Understanding Customer Jobs-to-be-done and crafting innovative solution design to map to customer's needs and create a strong value proposition - Understanding prototyping and Minimum Viable product (MVP) - Developing a feasibility prototype with differentiating value, features and benefits - Assess relative market position via competition analysis - Sizing the market and assess scope and potential scale of the opportunity.

Core Teaching Tool: Venture Activity, no-code Innovation tools, Class activity

LEARNING OUTCOMES

At the end if the Unit, the learners will be able to

- ➤ Analyze jobs-to-be-done
- ➤ Evaluate customer needs to create a strong value proposition
- Design and draw prototyping and MVP

UNIT-IV: Business & Financial Model, Go-to-Market Plan

Introduction to Business model and types, Lean approach, 9 block lean canvas model, riskiest assumptions to Business models. Importance of Build - Measure – Lean approach.

Business planning: components of Business plan- Sales plan, People plan and financial plan. Financial Planning: Types of costs, preparing a financial plan for profitability using financial template, understanding basics of Unit economics and analysing financial performance.

Introduction to Marketing and Sales, Selecting the Right Channel, creating digital presence, building customer acquisition strategy.

Choosing a form of business organization specific to your venture, identifying sources of funds: Debt& Equity, Map the Start-up Life-cycle to Funding Options.

Core Teaching Tool: Founder Case Studies – Sama and Securely Share; Class activity and discussions; Venture Activities.

LEARNING OUTCOMES

At the end of the Unit, the learners will be able to:

- Understand lean approach in business models
- ➤ Apply business plan, sales plan and financial plan
- ➤ Analyze financial planning, marketing channels of distribution.
- > Design their own venture and source of funds.

UNIT-V: Scale Outlook and Venture Pitch readiness

Understand and identify potential and aspiration for scale vis-a-vis your venture idea. Persuasive Storytelling and its key components. Build an Investor ready pitch deck.

Core Teaching Tool: Expert talks; Cases; Class activity and discussions; Venture Activities.

LEARNING OUTCOMES

At the end of the Unit, the learners will be able to

- Understand aspiration for scale
- ➤ Analyze venture idea and its key components
- > Evaluate and build investors ready pitch

TEXT BOOKS

- 1. Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Sabyasachi Sinha . *Entrepreneurship*, McGrawHill, 11th Edition.(2020)
- 2. Ries, E. *The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses*. Crown Business, (2011).
- 3. Osterwalder, A., & Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. John Wiley & Sons. (2010).

REFERENCES

- 1. Simon Sinek, Start with Why, Penguin Books limited. (2011)
- 2. Brown Tim, Change by Design Revised & Updated: How Design Thinking
- 3. Transforms Organizations and Inspires Innovation, Harper Business.(2019)
- 4. Namita Thapar (2022) The Dolphin and the Shark: Stories on Entrepreneurship, Penguin

Books Limited

5. Saras D. Sarasvathy, (2008) Effectuation: Elements of Entrepreneurial Expertise, Elgar Publishing Ltd.

E-RESOURCES

 $Learning\ resource\mbox{-}\ Ignite\ 5.0\ Course\ Wadhwani\ platform\ (Includes\ 200+\ components\ of\ Course\ Wadhwani\ platform\ (Includes\ 200+\ components\ (Includes\ 200+\ components\ Course\ Course\ (Includes\ 200+\ components\ (In$

custom created modular content + 500+ components of the most relevant curated content)

COURSE	OUTCOMES: At the end of the course, students will be able to	BTL
CO1	Develop an entrepreneurial mindset and appreciate the concept of entrepreneurship	L3
CO2	Comprehend the process of problem-opportunity identification through design thinking, identify market potential and customers while developing a compelling value proposition solution	L3
CO3	Analyze and refine business models to ensure sustainability and profitability	L3
CO4	Build Prototype for Proof of Concept and validate MVP of their practice venture idea	L4
CO5	Create business plan, conduct financial analysis and feasibility analysis to assess the financial viability of a venture	L5
CO6	Prepare and deliver an investible pitch deck of their practice venture to attract stakeholders	L6

BTL: Bloom's Taxonomy Level

III B.Tech. II Semester

Course Code	DISASTER	L	Т	P	С
-------------	----------	---	---	---	---

23A010606A	MANAGEMENT	3	0	0	3
25A010000A	(Open Elective – II)				

Course Objectives:

The objectives of this course are to make the student :

- 1. To understand the fundamental concepts of natural disasters, their occurrence, and disaster risk reduction strategies.
- 2. To analyze the impact of cyclones on structures and explore retrofitting techniques for adaptive reconstruction.
- 3. To apply wind engineering principles and computational techniques in designing wind-resistant structures.
- 4. To evaluate earthquake effects on buildings and develop strategies for seismic retrofitting.
- 5. To assess seismic safety planning, design considerations, and innovative construction materials for disaster-resistant structures.

Course Outcomes:

After successful completion of this course, students will be able to:

- 1. Understand the fundamental concepts of natural disasters, their occurrence, and disaster risk reduction strategies.
- 2. Analyze the impact of cyclones on structures and explore retrofitting techniques for adaptive reconstruction.
- 3. Apply wind engineering principles and computational techniques in designing wind-resistant structures.
- 4. Evaluate earthquake effects on buildings and develop strategies for seismic retrofitting.
- 5. Assess seismic safety planning, design considerations, and innovative construction materials for disaster-resistant structures.

CO – PO Articulation Matrix

00 101	CO TO Inticatation Matrix													
Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	P	P	P	PS	PS
Outco	1	2	3	4	5	6	7	8	9	0	0	0	O1	O 2
mes										10	11	12		
CO -1	3	-	-	-	-	2	-	2	2	-	-	-	3	3
CO -2	-	3	-	-	2	-	-	-	-	-	-	2	3	-
CO -3	3	-	-	3	-	-	3	-	-	2	-	-	-	3
CO -4	-	-	3	-	3	-	-	2	-	-	-	-	3	-
CO -5	-	-	-	3	-	3	3	3	2	-	-	_	-	3

UNIT - I

Introduction to Natural Disasters— Brief Introduction to Different Types of Natural Disasters, Occurrence of Disasters in Different Climatic and Geographical Regions, Hazard Maps (Earthquake and Cyclone) of The World and India, Regulations for Disaster Risk Reduction, Post-Disaster Recovery and Rehabilitation (Socioeconomic Consequences).

$\mathbf{UNIT} - \mathbf{II}$

Cyclones and Their Impact—Climate Change and Its Impact On Tropical Cyclones, Nature of Cyclonic Wind, Velocities and Pressure, Cyclone Effects, Storm Surges, Floods, and Landslides. Behavior of Structuresin Past Cyclones and Windstorms, Case Studies. Cyclonic Retrofitting, Strengthening of Structures, and Adaptive Sustainable Reconstruction. Life-Line Structures Such as Temporary Cyclone Shelters.

UNIT – III

Wind Engineering and Structural Response—Basic Wind Engineering, Aerodynamics of Bluff Bodies, Vortex Shedding, and Associated Unsteadiness Along and Across Wind forces. Lab: Wind Tunnel Testing and Its Salient Features. Introduction to Computational Fluid Dynamics (CFD). General Planning and Design Considerations Under Windstorms and Cyclones. Wind Effects On Buildings, towers, Glass Panels, Etc., and Wind-Resistant Features in Design. Codal Provisions, Design Wind Speed, Pressure Coefficients. Coastal Zoning Regulations for Construction and Reconstruction in Coastal Areas. Innovative Construction Materials and Techniques, Traditional Construction Techniques in Coastal Areas.

UNIT - IV

Seismology and Earthquake Effects— Causes of Earthquakes, Plate Tectonics, Faults, Seismic Waves; Magnitude, Intensity, Epicenter, Energy Release, and Ground Motions. Earthquake Effects— On Ground, Soil Rupture, Liquefaction, Landslides. Performance of Ground and Buildings in Past Earthquakes— Behavior of Various Types of Buildings and Structures, Collapse Patterns; Behavior of Non-Structural Elements Such as Services, Fixtures, and Mountings— Case Studies. Seismic Retrofitting— Weakness in Existing Buildings, Aging, Concepts in Repair, Restoration, and Seismic Strengthening.

UNIT - V

Planning and Design Considerations for Seismic Safety—General Planning and Design Considerations; Building forms, Horizontal and Vertical Eccentricities, Mass and Stiffness Distribution, Soft Storey Effects, Etc.; Seismic Effects Related to Building Configuration. Plan and Vertical Irregularities, Redundancy, and Setbacks. Construction Details—Various Types of Foundations, Soil Stabilization, Retaining Walls, Plinth Fill, Flooring, Walls, Openings, Roofs, Terraces, Parapets, Boundary Walls, Underground and Overhead Tanks, Staircases, and Isolation of Structures. Innovative Construction Materials and Techniques. Local Practices—Traditional Regional Responses. Computational Investigation Techniques.

TEXT BOOKS:

- 1. David Alexander, *Natural Disasters*, 1st Edition, CRC Press, 2017.
- 2. Edward A. Keller and Duane E. DeVecchio, *Natural Hazards: Earth's Processes as Hazards*, *Disasters*, *and Catastrophes*, 5th Edition, Routledge, 2019.

REFRENCE BOOKS:

- 1. Ben Wisner, J.C. Gaillard, and IlanKelman (Editors), *Handbook of Hazards and Disaster Risk Reduction and Management*, 2nd Edition, Routledge, 2012.
- 2. Damon P. Coppola, *Introduction to International Disaster Management*, 4th Edition, Butterworth-Heinemann, 2020.
- 3. BimalKanti Paul, *Environmental Hazards and Disasters: Contexts, Perspectives and Management*, 2nd Edition, Wiley-Blackwell, 2020.

Online Learning Resources:

https://nptel.ac.in/courses/124107010

https://onlinecourses.swayam2.ac.in/cec19_hs20/preview

III B.Tech - II Semester

Course Code SUSTAINABILITY IN L T P C

23a01606B	ENGINEERING PRACTICES	3	0	0	3
23401000B	(OE – II)				

Course Objectives:

The objectives of this course are to make the student:

- 1. To understand the fundamentals of sustainability, the carbon cycle, and the environmental impact of construction materials.
- 2. To analyze sustainable construction materials, their durability, and life cycle assessment.
- 3. To apply energy calculations in construction materials and assess their embodied energy.
- 4. To evaluate green building standards, energy codes, and performance ratings.
- 5. To assess the environmental effects of energy use, climate change, and global warming.

Course Outcomes:

After successful completion of this course, students will be able to:

- 1. Understand the fundamentals of sustainability, the carbon cycle, and the environmental impact of construction materials.
- 2. Analyze sustainable construction materials, their durability, and life cycle assessment.
- 3. Apply energy calculations in construction materials and assess their embodied energy.
- 4. Evaluate green building standards, energy codes, and performance ratings.
- 5. Assess the environmental effects of energy use, climate change, and global warming.

CO – PO Articulation Matrix

Course	PO	P	P	P	PS	PS								
Outco	1	2	3	4	5	6	7	8	9	0	0	0	O1	O2
mes										10	11	12		
CO -1	3	-	-	-	-	2	3	2	-	-	-	-	3	3
CO -2	-	3	-	-	2	-	3	-	-	-	-	2	3	3
CO -3	-	-	3	3	3	-	2	-	-	2	-	-	3	3
CO -4	-	-	3	3	3	-	3	2	-	-	-	-	3	3
CO -5	-	-	-	-	-	3	3	3	-	-	-	-	-	3

UNIT - I

INTRODUCTION

Introduction and Definition of Sustainability - Carbon Cycle - Role of Construction Material: Concrete and Steel, Etc. - CO_2 Contribution From Cement and Other Construction Materials.

UNIT - II

MATERIALS USED in SUSTAINABLE CONSTRUCTION

Construction Materials and Indoor Air Quality - No/Low Cement Concrete - Recycled and Manufactured Aggregate - Role of QC and Durability - Life Cycle and Sustainability.

UNIT - III

ENERGY CALCULATIONS

Components of Embodied Energy - Calculation of Embodied Energy for Construction Materials - Energy Concept and Primary Energy - Embodied Energy Via-A-Vis

Operational Energy in Conditioned Building - Life Cycle Energy Use

UNIT - IV

GREEN BUILDINGS

Control of Energy Use in Building - ECBC Code, Codes in Neighboring Tropical Countries - OTTV Concepts and Calculations - Features of LEED and TERI - GRIHA Ratings - Role of Insulation and Thermal Properties of Construction Materials - Influence of Moisture Content and Modeling - Performance Ratings of Green Buildings - Zero Energy Building

UNIT – V

ENVIRONMENTAL EFFECTS

Non-Renewable Sources of Energy and Environmental Impact— Energy Norm, Coal, Oil, Natural Gas - Nuclear Energy - Global Temperature, Green House Effects, Global Warming - Acid Rain: Causes, Effects and Control Methods - Regional Impacts of Temperature Change.

TEXT BOOKS:

- 1. Charles J Kibert, Sustainable Construction: Green Building Design & Delivery, 4th Edition, Wiley Publishers 2016.
- 2. Steve Goodhew, Sustainable Construction Process, Wiley Blackwell, UK, 2016.

REFRENCE BOOKS:

- 1. Craig A. Langston & Grace K.C. Ding, Sustainable Practicesin the Built Environment, Butterworth Heinemann Publishers, 2011.
- 2. William P Spence, Construction Materials, Methods & Techniques (3e), Yesdee Publication Pvt. Ltd, 2012.

Online Learning Resources:

https://archive.nptel.ac.in/courses/105/105/105105157/

III B.Tech. II Semester

L	T	P	C
3	0	0	3

23A02605 RENEWABLE ENERGY SOURCES (Open Elective-II)

Course Outcomes (CO): At the end of the course the student will be able to:

- CO 1: Understand principle operation of various renewable energy sources. L1
- CO 2: Identify site selection of various renewable energy sources. L2
- CO 3: Analyze various factors affecting on solar energy measurements, wind energy conversion techniques, Geothermal, Biomasss, Tidal Wave and Fuel cell energies L3
- CO 4: Design of Solar PV modules and considerations of horizontal and vertical axis Wind energy systems. L5
- CO 5: Apply the concepts of Geo Thermal Energy, Ocean Energy, Bio mass and Fuel Cells for generation of power. L4

UNIT I Solar Energy:

Solar radiation - beam and diffuse radiation, solar constant, Sun at Zenith, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

UNIT II PV Energy Systems:

Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Solar PV modules from solar cells, mismatch in series and parallel connections design and structure of PV modules, Electrical characteristics of silicon PV cells and modules, Stand-alone PV system configuration, Grid connected PV systems.

UNIT III Wind Energy:

Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades; wind data and energy estimation and site selection considerations.

UNIT IV Geothermal Energy:

Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

UNIT – V Miscellaneous Energy Technologies:

Ocean Energy: Tidal Energy-Principle of working, Operation methods, advantages and limitations. Wave Energy-Principle of working, energy and power from waves, wave energy conversion devices, advantages and limitations.

Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration Fuel cell: Principle of working of various types of fuel cells and their working, performance and limitations.

Text books:

- 1.G. D. Rai, "Non-Conventional Energy Sources", 4th Edition, Khanna Publishers, 2000.
- 2.Chetan Singh Solanki "Solar Photovoltaics fundamentals, technologies and applications" 2nd Edition PHI Learning Private Limited. 2012.

Reference Books:

- 1.Stephen Peake, "Renewable Energy Power for a Sustainable Future", Oxford International Edition, 2018.
- 2.S. P. Sukhatme, "Solar Energy", 3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008.
- 3.B H Khan , "Non-Conventional Energy Resources", 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 4.S. Hasan Saeed and D.K.Sharma, "Non-Conventional Energy Resources", 3rd Edition, S.K.Kataria& Sons, 2012.
- 5.G. N. Tiwari and M.K.Ghosal, "Renewable Energy Resource: Basic Principles and Applications", Narosa Publishing House, 2004.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103103206
- 2. https://nptel.ac.in/courses/108108078

III B. Tech -II Sem L T P C 3 0 0 3

23A030606 AUTOMATION AND ROBOTICS

(Open Elective – II)

	Course objectives: The objectives of the course are to
1	Fundamentals of industrial automation, production types, automation strategies, and hardware
1	elements used in modern manufacturing processes.
2	Understanding of automated manufacturing systems, and strategies for improving productivity and
	flexibility in industrial automation.
3	Knowledge of industrial automation and robotics, sensors, and end-effector design for modern
3	manufacturing environments.
4	Explain industrial automation and robotics, and trajectory planning for intelligent and efficient
4	manufacturing applications.
_	Familiarity of industrial automation and robotics, and practical applications in manufacturing
5	processes.

	COURSE OUTCOMES On successful completion of this course the student will be ab	le to
1 ^{Un}	derstand and analyze the structure and functions of automated manufacturing systems, and evaluate hardware components for efficient production.	L2,L4,L5
2 ^{An}	alyze and design automated flow lines with or without buffer storage, perform quantitative evaluations, apply assembly line balancing techniques.	L4,L5,L6
3 ^{Cli}	assify robot configurations, select suitable actuators and sensors, analyze and apply automation and robotics principles to optimize production efficiency and flexibility.	L2,L3,L4
	ply kinematic and dynamic modeling using D-H notation and select appropriate hardware and control strategies for real-world industrial scenario to analyze and design automated and robotic systems.	L3,L4,L5
₅ De	sign, program, and implement robotic systems, understand and apply robotics technology to manufacturing tasks.	L1,L3,L6

UNIT-I

Introduction to Automation:

Introduction to Automation, Need, Types, Basic elements of an automated system, Manufacturing Industries, Types of production, Functions in manufacturing, Organization and information processing in manufacturing, Automation strategies and levels of automation, Hardware components for automation and process control, mechanical feeders, hoppers, orienters, high speed automatic insertion devices.

UNIT-II

Automated flow lines:

Automated flow lines, Part transfer methods and mechanisms, types of Flow lines, flow line with/without buffer storage, Quantitative analysis of flow lines. Assembly line balancing: Assembly process and systems assembly line, line balancing methods, ways of improving line balance, flexible assembly lines.

UNIT-III

Introduction to Industrial Robotics:

Introduction to Industrial Robotics, Classification of Robot Configurations, functional line diagram, degrees of freedom. Components common types of arms, joints grippers, factors to be considered in the design of grippers.

Robot actuators and Feedback components: Actuators, Pneumatic, Hydraulic actuators, Electric & Stepper motors, comparison. Position sensors - potentiometers, resolvers, encoders - velocity sensors, Tactile sensors, Proximity sensors.

UNIT-IV

Manipulator Kinematics:

Manipulator Kinematics, Homogenous transformations as applicable to rotation and transition - D-H notation, Forward inverse kinematics.

Manipulator Dynamics: Differential transformations, Jacobians, Lagrange - Euler and Newton - Euler formations. Trajectory Planning: Trajectory Planning and avoidance of obstacles path planning, skew motion, joint integrated motion - straight line motion.

UNIT-V

Robot Programming:

Robot Programming, Methods of programming - requirements and features of programming languages, software packages. Problems with programming languages.

Robot Application in Manufacturing: Material Transfer - Material handling, loading and unloading - Process - spot and continuous arc welding & spray painting - Assembly and Inspection.

Text Books:

- 1. Automation, Production systems and CIM, M.P. Groover / Pearson Edu.
- 2. Industrial Robotics M.P. Groover, TMH.

3

References:

- 1. Robotics, Fu K S, McGraw Hill, 4th edition, 2010.
- An Introduction to Robot Technology, P. Coiffet and M. Chaironze, Kogam Page Ltd. 1983 London.
- 3. Robotic Engineering, Richard D. Klafter, Prentice Hall
- 4. Robotics, Fundamental Concepts and analysis Ashitave Ghosal ,Oxford Press, 1/e, 2006
- 5. Robotics and Control, Mittal R K & Nagrath I J, TMH.

Online Learning Resources:

 $\underline{https://www.youtube.com/watch?v=yxZm9WQJUA0\&list=PLRLB5WCqU54UJG45UnazSYmnmhl-\underline{gt76o}}$

https://www.youtube.com/watch? v=6f3bvIhSWyM&list=PLRLB5WCqU54X5Vy4DwjfSODT3ZJgwEjyE

III B.Tech II Sem

L - T - P - C 3 - 0 - 0 - 3

23A04606

DIGITAL ELECTRONICS (Open Elective –II)

Course Objectives:

- 1. To Learn Boolean algebra, logic simplification techniques, and combinational circuit design.
- 2. To analyze combinational circuits like adders, subtractors, and code converters.
- 3. To explore combinational logic circuits and their applications in digital design.
- 4. To understand sequential logic circuits, including latches, flip-flops, counters, and shift registers.
- 5. To gain knowledge about programmable logic devices and digital IC's.

Course Outcomes:

At the end of this course, the students will be able to

- 1. Learn Boolean algebra, logic simplification techniques, and combinational circuit design.
- 2. Analyze combinational circuits like adders, subtractors, and code converters.
- 3. Explore combinational logic circuits and their applications in digital design.
- 4. Understand sequential logic circuits, including latches, flip-flops, counters, and shift registers.
- 5. Gain knowledge about programmable logic devices and digital IC's.

UNIT-I

Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Introduction to Logic Gates, Ex-OR, Ex-NOR operations, Minimization of Switching Functions: Karnaugh map method, Logic function realization: AND-OR, OR-AND and NAND/NOR realizations.

UNIT-II

Introduction to Combinational Design 1: Binary Adders, Subtractors and BCD adder, Code converters - Binary to Gray, Gray to Binary, BCD to excess3, BCD to Seven Segment display.

UNIT-III

Combinational Logic Design 2: Decoders, Encoders, Priority Encoder, Multiplexers, Demultiplexers, Comparators, Implementations of Logic Functions using Decoders and Multiplexers. **IINIT-IV**

Sequential Logic Design: Latches, Flip-flops, S-R, D, T, JK and Master-Slave JK FF, Edge triggered FF, set up and hold times, Ripple counters, Shift registers.

UNIT-V

Programmable Logic Devices: ROM, Programmable Logic Devices (PLA and PAL).

Digital IC's:Decoder (74x138), Priority Encoder (74x148), multiplexer (74x151) and de-multiplexer (74x155), comparator (74x85).

TEXT BOOKS:

- 1. Digital Design, M.Morris Mano & Michel D. Ciletti, 5th Edition, Pearson Education, 1999.
- 2. Switching theory and Finite Automata Theory, ZviKohavi and NirahK.Jha, 2nd Edition, Tata McGraw Hill, 2005.

REFERENCE BOOKS:

1. Fundamentals of Logic Design, Charles H Roth, Jr., 5th Edition, Brooks/cole Cengage Learning, 2004.

2.

III B.Tech II Sem

L	T	P	С
3	0	0	3

23A54601a OPTIMIZATION TECHNIQUES (Open Elective -II)

Course Outcomes:

After successful completion of this course, the students should be able to:

COs	Statements					
CO1	Understand the meaning, purpose, tools of Operations Research and linear programming in solving practical problems in industry.	L2, L3				
	Interpret the transportation models' solutions and infer solutions to the real-world problems.	L3, L5				
CO3	Develop mathematical skills to analyze and solve nonlinear programming models arising from a wide range of applications.	L3				
CO4	Apply the concept of non-linear programming for solving the problems involving non-linear constraints and objectives	L2, L3				
CO5	Apply the concept of unconstrained geometric programming for solving the problems involving non-linear constraints and objectives.	L3,L5				

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-		-	-	-	-	1
CO2	3	2	2	2	-	-	-	-	-	-	-	1
CO3	3	2	2	1	-	-		-	-	-	-	1
CO4	2	2	2	1	-	-	-	-	-	-	-	1
CO5	3	3	2	1	-	-	-	-	-	-	-	1

1-Slightly, 2-Moderately, 3-Substantially.

UNIT – I: Linear programming I

(80)

Introduction, Applications of Linear Programming, Standard form of a Linear Programming Problem, Geometry of Linear Programming Problems, Basic Definitions in Linear Programming. Simplex Method, Simplex Algorithm and Two phase Simplex Method, Big-M method.

UNIT – II Linear programming II: Duality in Linear Programming (08)

Symmetric Primal-Dual Relations, General Primal-Dual Relations, Duality Theorem, Dual Simplex Method, Transportation Problem and assignment problem, Complementary slackness Theorem

UNIT – III Non-linear programming: Unconstrained optimization techniques (08)

Introduction: Classification of Unconstrained minimization methods,

Direct Search Methods: Random Search Methods: Descent Method and Fletcher Powell Method, Grid Search Method

UNIT – IV Non-linear programming: Constrained optimization techniques (08)

Introduction, Characteristics of a constrained problem, Random Search Methods, complex method, Sequential linear programming, Basic approach in methods of Feasible directions, Zoutendijk's

method of feasible directions: direction finding problem, determination of step length, Termination criteria.

UNIT-V Geometric Programming

(80)

Unconstrained Minimization Problems: solution of unconstrained geometric programming using differential calculus and arithmetic-geometric inequality.

Constrained minimization Problems: Solution of a constrained geometric programming problem, primal-dual programming in case of less-than inequalities, geometric programming with mixed inequality constraints.

TEXT BOOK:

- 1. Singiresu S Rao., Engineering Optimization: Theory and Practices, New Age Int. (P) Ltd. Publishers, New Delhi.
- 2. J. C. Panth, Introduction to Optimization Techniques, (7-e) Jain Brothers, New Delhi.

REFERENCES:

- 1. Harvey M. Wagner, Principles of Operation Research, Printice-Hall of India Pvt. Ltd. New Delhi.
- 2. Peressimi A.L., Sullivan F.E., Vhl, J. J. Mathematics of Non-linear Programming, Springer Verlag.

Web Reference:

- https://onlinecourses.nptel.ac.in/noc24 ee122/preview
- https://archive.nptel.ac.in/courses/111/105/111105039/
- https://onlinecourses.nptel.ac.in/noc21 ce60/preview

	MATHEMATICAL FOUNDATION OF QUANTUM	L	T	P	C
23A54601b	TECHNOLOGIES	2	_	0	2
	Open Elective – II	3	יט	ן ט	3

Course Objectives:

- To provide students with essential linear algebra foundations including vector spaces, inner products, and operators for quantum mechanical applications.
- To develop understanding of the transition from finite-dimensional systems to infinite-dimensional function spaces and Hilbert space concepts.
- To establish quantum mechanical formalism including measurement theory, uncertainty relations, and time evolution principles.
- To enable students to apply quantum mechanical principles to solve problems in simple quantum systems and understand statistical interpretation.
- To introduce advanced concepts in composite systems, measurement processes, and modern perspectives in quantum mechanics.

Course Outcomes:

After successful completion of this course, the students should be able to:

COs	Statements	Blooms level
CO1	Understand vector spaces, inner products, and linear operators with applications to quantum systems.	L1, L2 (Understand, Comprehend)
CO2	Apply linear algebra concepts to function spaces and analyze the transition from finite to infinite dimensional systems.	L3, L4 (Apply, Analyze)
CO3	Analyze quantum mechanical formalism including measurement theory, uncertainty relations, and time evolution.	L4 (Analyze)
CO4	Apply quantum mechanical principles to solve problems in simple quantum systems and evaluate statistical interpretations.	L3, L5 (Apply, Evaluate)
CO5	Evaluate advanced concepts in composite systems and synthesize understanding of measurement processes and modern quantum theory.	L5, L6 (Evaluate, Create)

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3	2	2	1	-	-	-	-	-	-	2
CO 2	3	3	2	3	2	-	-	-	-	-	-	2
CO 3	3	3	3	3	2	-	-	-	-	-	-	2
CO 4	3	3	3	3	2	-	-	-	-	-	-	2
CO 5	3	3	3	3	2	1	-	-	-	-	-	3

^{• 3 =} Strong Mapping, 2 = Moderate Mapping, 1 = Slight Mapping, - = No Mapping

UNIT I: Linear Algebra Foundation for Quantum Mechanics (10 hours)

Vector spaces definition and examples (R², R³, function spaces), Inner products (dot product, orthogonality, normalization), Linear operators (matrices, eigenvalues, eigenvectors), Finite-dimensional examples (2×2 matrices, spin-1/2 systems), Dirac notation introduction ($|\psi\rangle$, $\langle \phi|$, $\langle \phi|\psi\rangle$), Change of basis (transformations, unitary matrices).

UNIT II: From Finite to Infinite Dimensions (08 hours)

Function spaces (L^2 space, square-integrable functions), Inner products for functions ($\int \psi^* \phi \ dx$), Orthogonal function sets (Fourier series, basis functions), Introduction to Hilbert space concept (complete inner product spaces), Position and momentum representations (wave functions), Operators on functions (d/dx, multiplication by x).

UNIT III: Quantum Mechanical Formalism (08 hours)

Mathematical formulation (states as vectors, observables as operators), Measurement theory (Born rule, expectation values, probabilities), Uncertainty relations (mathematical derivation from commutators), Time evolution (Schrödinger equation, unitary evolution).

UNIT IV: Applications and Statistical Interpretation (06 hours)

Simple applications (infinite square well, harmonic oscillator), Statistical interpretation (ensembles, pure vs mixed states), Measurement process (von Neumann measurement scheme).

UNIT V: Advanced Topics (08 hours)

Composite systems (tensor products basic introduction), Reversibility and irreversibility (unitary evolution vs measurement), Thermodynamic connections (equilibrium states, entropy), Modern perspectives (decoherence, measurement problem conceptual).

Textbooks:

- 1. David J. Griffiths, Darrell F. Schroeter, "Introduction to Quantum Mechanics", 3rd Edition, Cambridge University Press (2018).
- 2. R. Shankar, Principles of Quantum Mechanics, 2nd Edition, Kluwer Academy/Plenum Publishers (1994).

Reference Books:

- 1. George. F. Simmons, "Introduction to Topology and Modern Analysis", MedTech Science Press.
- 2. Gilbert Strang, Linear Algebra and Its Applications, 4th Edition, Cengage Learning (2006).
- 3. John von Neumann and Robert T Beyer, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press (1996).

Web Resources

- $1. \ \underline{https://eclass.uoa.gr/modules/document/file.php/CHEM248/Griffiths\%20-\%20Introduction\%20to} \\ \underline{\%20Quantum\%20Mechanics\%203rd\%20ed\%202018.pdf}$
- 2. https://fisica.net/mecanica-quantica/Shankar%20-%20Principles%20of%20quantum%20mechanics.pdf

III B.Tech II Sem

23A56601	PHYSICS OF ELECTRONIC MATERIALS AND DEVICES	Credits
	(Common to all branches)	3-0-0:3
	Open Elective-II	

	Course Objectives
1	To make the students to understand the concept of crystal growth, defects in crystals and thin films.
2	To provide insight into various semiconducting materials and their properties.
3	To develop a strong foundation in semiconductor physics and device engineering.
4	To elucidate excitonic and luminescent processes in solid-state materials.
5	To understand the principles, technologies, and applications of modern display systems.

Syllabus:

UNIT-I Fundamentals of Materials Science

9H

Introduction, Phase rule, Phase Diagram, Elementary idea of Nucleation and Growth, Methods of crystal growth. The basic idea of point, line, and planar defects. Concept of thin films, preparation of thin films, Deposition of thin film using sputtering methods (RF and glow discharge).

UNIT II Semiconductors

9H

Introduction, charge carriers in semiconductors, effective mass, Diffusion and drift, Diffusion and recombination, Diffusion length. The Fermi level & Fermi-Dirac distribution, Electron and Hole in quantum well, Change of electron-hole concentration- Qualitative analysis, Temperature dependency of carrier concentration, Conductivity and mobility, Effects of temperature and doping on mobility, High field effects.

UNIT III Physics of Semiconductor Devices:

9H

Introduction, Band structure, PN junctions and their typical characteristics under equilibrium and under bias, Heterojunctions, Transistors, MOSFETs.

UNIT IV Excitons and Luminescence:

9H

Luminescence: Different types of luminescence, basic definitions, Light emission in solids, Interband luminescence, Direct and indirect gap materials.

Photoluminescence : General Principles of photoluminescence, Excitation and relaxation, OLED, Quantum-dot.

Electro-luminescence: General Principles of electroluminescence, light emitting diode, diode laser.

UNIT V Display devices:

9H

LCD, three-dimensional display: Holographic display, light-field displays: Head-mounted display, MOEMS (Micro-Opto-Electro-Mechanical Systems) and MEMS displays.

Textbooks:

1. Principles of Electronic Materials and Devices-S.O. Kasap, McGraw-Hill Education (India) Pvt. Ltd.,4thedition, 2021.

2. Semiconductor physics & devices: basic principles, 4th Edition, McGraw-Hill, 2012.

Reference Books:

- 1. Solid State Electronic Devices -B.G. Streetman and S. Banerjee, PHI Learning,6th edition
- 2. Electronic Materials Science- Eugene A. Irene, Wiley, 2005
- 3. Electronic Components and Materials, Grover and Jamwal, DhanpatRai and Co., New Delhi., 2012.
- 4. An Introduction to Electronic Materials for Engineers-Wei Gao, Zhengwei Li, Nigel Sammes, World Scientific Publishing Co. Pvt. Ltd. 2nd Edition, 2011

NPTEL course links:

https://nptel.ac.in/courses/113/106/113106062/

https://onlinecourses.nptel.ac.in/noc20_ph24/preview

	Course Outcomes	Blooms Level
CO1	Understand crystal growth and thin film preparation	L1,L2
CO2	Summarize the basic concepts of semiconductors	L1,L2
CO3	Illustrate the working of various semiconductor devices	L1,L2, L3
CO4	Analyze various luminescent phenomena and the devices based on these concepts	L1,L2, L3
CO5	Explain the working of different display devices	L1,L2

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1							
CO2	3	3	2	1	1							
CO3	3	3	2	1	1							
CO4	3	2	1	1	-							
CO5	3	3	1	1	-							

1-Slightly, 2-Moderately, 3-Substantially.

2	3A51601	CHEMISTRY OF POLYMERS AND	Credits					
		APPLICATIONS	3-0-0:3					
		(Common to all branches)						
		Open Elective-II						
	Course Objectives							
1	To understand the basic principles of polymers							
2	To understand natural polymers and their applications.							
3	To impar	t knowledge to the students about synthetic polymers, their	preparation a	and				
importance.								
4	To enumerate	the applications of hydogel polymers						
5	To enumerate	applications of conducting and degradable polymers in engineer	ing.					

	Course Outcomes						
CO1	Classify the polymers, Explain polymerization mechanism, Differentiate addition,						
	condensation polymerizations, Describe measurement of molecular weight of polymer						
CO2	Describe the physical and chemical properties of natural polymers and Modified cellulosics.						
CO3	Differentiate Bulk, solution, Suspension and emulsion polymerization, Describe fibers and						
CO3	elastomers, Identify the thermosetting and thermo polymers.						
CO4	Identify types of polymer networks, Describe methods involve in hydrogel preparation,						
CO4	Explain applications of hydrogels in drug delivery,						
CO5	Explain classification and mechanism of conducting and degradable polymers.						

Mapping between Course Outcomes and Programme Outcomes

	PO1	PO2	РО3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Unit - I: Polymers-Basics and Characterization:-

Basic concepts: monomers, repeating units, degree of polymerization, linear, branched and network polymers, classification of polymers, Polymerization: addition, condensation, copolymerization and coordination polymerization. Average molecular weight concepts: number, weight and viscosity average molecular weights, polydispersity and molecular weight distribution. Measurement of molecular weight: End group, viscosity, light scattering, osmotic and ultracentrifugation methods, analysis and testing of polymers.

Unit - II: Natural Polymers & Modified cellulosics

Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins.

Modified cellulosics: Cellulose esters and ethers such as Ethyl cellulose, CMC, HPMC, cellulose acetals, Liquid crystalline polymers; specialty plastics- PES, PAES, PEEK, PEA.

Unit – III: Synthetic Polymers

Addition and condensation polymerization processes—Bulk, Solution, Suspension and Emulsion polymerization. Preparation and significance, classification of polymers based on physical properties. Thermoplastics, Thermosetting plastics, Fibers and elastomers, General Applications. Preparation of Polymers based on different types of monomers, Olefin polymers(PE,PVC), Butadiene polymers(BUNA-S,BUNA-N), nylons, Urea-formaldehyde, phenol — formaldehyde, Melamine Epoxy and Ion exchange resins.

Unit-IV: Hydrogels of Polymer networks

Definitions of Hydrogel, polymer networks, Types of polymer networks, Methods involved in hydrogel preparation, Classification, Properties of hydrogels, Applications of hydrogels in drug delivery.

Unit – V: Conducting and Degradable Polymers:

Conducting polymers: Introduction, Classification, Mechanism of conduction in Poly Acetylene, Poly Aniline, Poly Thiophene, Doping, Applications.

Degradable polymers: Introduction, Classifications, Examples, Mechanism of degradation, poly lactic acid, Nylon-6, Polyesters, applications.

Text Books:

- 1. A Text book of Polymer science, Billmayer
- 2. Polymer Chemistry G.S.Mishra
- 3. Polymer Chemistry Gowarikar

References Books:

- 1. Organic polymer Chemistry, K.J.Saunders, Chapman and Hall
 - 2. Advanced Organic Chemistry, B. Miller, Prentice Hall
 - 3. Polymer Science and Technology by Premamoy Ghosh, 3rd edition, McGraw-Hill, 2010.

III B.Tech -II Sem

23A52602	ACADEMIC WRITING AND PUBLIC SPEAKING (Common to All Branches of Engineering) OPEN ELECTIVE - II	1 3	T 0	P 0	C 3
Course Objectives:	OPEN ELECTIVE - II				
	round development of the students by focusing on wri	iting sk	ills		
	dents aware of non-verbal skills	O			
 To develop analy 					
1 .	ive public speeches				
Course Outcomes (CO):		ns Leve	l		-
By the end of the program	students will be able to				
	ous elements of Academic Writing	L	1, L2		
	and avoid plagiarism		1, L2		
	knowledge in writing a Research paper		L3		
 Analyse differen 			L4		
	thes of others and know the positive strengths of speaker	ers	L5		
	e in giving an impactful presentation to the audience		L3		
UNIT - I	Introduction to Academic Writing	Lectu	re Hrs		
UNIT - II	Academic Journal Article	Lectu			
	arizing and paraphrasing - Abstract Writing, writing Project esearch/Journal Paper Writing – Conference Paper writing -				
UNIT - III	Essay & Writing Reviews	Lectu	re Hrs		
	rgumentative Essay – Exploratory Essay – Features and Ana marizing, Book/film Review- SoP	lysis of	Sampl	e Essay	s –
UNIT - IV	Public Speaking	Lectu	re Hrs		
	cteristics, significance of Public Speaking – Presentation – 4 ategies –Analysis of Impactful Speeches- Speeches for Acad			ation –	Stage
UNIT - V	Public Speaking and Non-Verbal Delivery	Lectu			
Signs	xpressions-Kinesics – Oculesics – Proxemics – Haptics – Ch	ronomi	cs -Par	alangua	ıge -
Textbooks:					
3. Critical Thinking	g, Academic Writing and Presentation Skills: MG Univ	ersity I	Editior	ı Paper	back –

- 3. *Critical Thinking, Academic Writing and Presentation Skills*: MG University Edition Paperback 1 January 2010 Pearson Education; First edition (1 January 2010)
- 4. Pease, Allan & Barbara. The Definitive Book of Body LanguageRHUS Publishers, 2016

Reference Books:

- 1. <u>Alice Savage</u>, <u>Masoud Shafiei</u> *Effective Academic Writing*,**2Ed.**,2014 Oxford University Press.
- 2. Shalini Verma, *Body Language*, S Chand Publications 2011.
- 3. Sanjay Kumar and Pushpalata, Communication Skills 2E 2015, Oxford.
- 4. Sharon Gerson, Steven Gerson, *Technical Communication Process and Product*, Pearson, New Delhi, 2014
- 5. Elbow, Peter. Writing with Power. OUP USA, 1998

Online Learning Resources:

- 1. https://youtu.be/NNhTIT81nH8
- 2. phttps://www.youtube.com/watch?v=478ccrWKY-A

- 3. https://www.youtube.com/watch?v=nzGo5ZC1gMw
- 4. https://www.youtube.com/watch?v=Qve0ZBmJMh4
- 5. https://courses.lumenlearning.com/publicspeakingprinciples/chapter/chapter-12-nonverbal-aspects-of-delivery/
- 6. https://onlinecourses.nptel.ac.in/noc21_hs76/preview
- 7. https://archive.nptel.ac.in/courses/109/107/109107172/#
- 8. https://archive.nptel.ac.in/courses/109/104/109104107/

IV B.Tech – I Semester

Course Code	BUILDING MATERIALS	L	Т	P	С
-------------	--------------------	---	---	---	---

224017044	AND SERVICES	3	0	0	3
23A01704A	(OPEN ELECTIVE – III)				

Course Objectives:

The objectives of this course are to make the student:

- 1. To understand the properties, classifications, and applications of building materials like stones, bricks, tiles, wood, aluminum, glass, paints, and plastics.
- 2. To analyze the composition, manufacturing process, and properties of cement and admixtures.
- 3. To apply knowledge of building components such as lintels, arches, walls, stairs, floors, roofs, foundations, and joinery.
- 4. To evaluate masonry, mortars, finishing techniques, and formwork systems.
- 5. To assess various building services including plumbing, ventilation, air conditioning, acoustics, and fire protection.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- 1. Understand the properties, classifications, and applications of building materials like stones, bricks, tiles, wood, aluminum, glass, paints, and plastics.
- 2. Analyze the composition, manufacturing process, and properties of cement and admixtures.
- 3. Apply knowledge of building components such as lintels, arches, walls, stairs, floors, roofs, foundations, and joinery.
- 4. Evaluate masonry, mortars, finishing techniques, and formwork systems.
- 5. Assess various building services including plumbing, ventilation, air conditioning, acoustics, and fire protection.

CO – PO Articulation Matrix

Course	PO	P	P	P	PS	PS								
Outco	1	2	3	4	5	6	7	8	9	O	O	O	O1	O 2
mes										10	11	12		
CO -1	3	-	-	-	2	-	-	-	-	-	-	-	3	3
CO -2	3	3	-	-	2	-	-	-	-	-	-	2	3	3
CO -3	3	-	3	2	3	-	-	-	-	-	-	-	3	3
CO -4	-	-	3	3	3	-	2	-	-	-	-	-	3	3
CO -5	-	-	-	-	-	3	3	2	-	-	-	-	-	3

UNIT - I

StonesandBricks, Tiles: Building Stones – Classifications and Quarrying – Properties – Structural Requirements – Dressing. Bricks – CompositionofBrick Earth – Manufacture and Structural Requirements, Fly Ash, Ceramics. Timber, Aluminum, Glass, PaintsandPlastics: Wood - Structure – Types and Properties – Seasoning – Defects; Alternate Materials for Timber – GI / Fibre – Reinforced Glass Bricks, Steel & Aluminum, Plastics.

UNIT - II

Cement & Admixtures: Types of Cement - Ingredients of Cement - Manufacture - Chemical Composition - Hydration - Field & Lab Tests - Fineness - Consistency - Initial & Final Setting - Soundness . Admixtures - Mineral & Chemical Admixtures - Uses

UNIT – III	

Building Components: Lintels, Arches, Walls, Vaults – Stair Cases – Types of Floors, Types of Roofs – Flat, Curved, Trussed; Foundations – Types; Damp Proof Course; Joinery – Doors – Windows – Materials – Types.

UNIT - IV

Mortars, MasonryandFinishing's Mortars: Lime and Cement Mortars Brick Masonry – Types – Bonds; Stone Masonry – Types; Composite Masonry – Brick-Stone Composite; Concrete, Reinforced Brick. Finishers: Plastering, Pointing, Painting, Claddings – Types – Tiles – ACP.form Work: Types: Requirements – Standards – Scaffolding – Design; Shoring, Underpinning.

UNIT - V

Building Services: Plumbing Services: Water Distribution, Sanitary – Lines &Fittings; Ventilations: Functional Requirements Systems of Ventilations. Air-Conditioning – Essentials and Types; Acoustics – Characteristic – Absorption – Acoustic Design; Fire Protection – Fire Hazards – Classification of Fire Resistant Materials and Constructions.

TEXT BOOKS:

- 1. Building Materials and Construction Arora&Bindra, Dhanpat Roy Publications.
- 2. Building Materials and Construction by G C Sahu, Joygopal Jena McGraw hill Pvt Ltd 2015.

REFRENCE BOOKS:

- 1. Building Construction by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain Laxmi Publications (P) ltd., New Delh
- 2. P. C. Varghese, Building Materials, Prentice Hall of India, 2015.
- 3. N.Subramanian ,"Building Materials Testing and Sustainability", Oxford Higher Education, 2019.
- 4. R. Chudley, Construction Technology, Longman Publishing Group, 1973.
- 5. S. K. Duggal, Building Materials, Oxford & IBH Publishing Co. Ltd., New Delhi, 2019

Online Learning Resources:

https://archive.nptel.ac.in/courses/105/102/105102088/

Course Code	ENVIRONMENTAL IMPACT	L	T	P	С
23A01704B	ASSESSMENT	3	0	0	3
25A01/04B	(OPEN ELECTIVE – III)				

Course Objectives:

The objectives of this course are to make the student to:

- 1. Understand the principles, methodologies, and significance of Environmental Impact Assessment (EIA).
- 2. Analyze the impact of developmental activities on land use, soil, and water resources.
- 3. Evaluate the impact of development on vegetation, wildlife, and assess environmental risks.
- 4. Develop environmental audit procedures and assess compliance with environmental regulations.
- 5. Understand and apply environmental acts, notifications, and legal frameworks in EIA studies.

Course Outcomes (COs):

Upon successful completion of the course, students will be able to:

- 1. Apply various methodologies for conducting Environmental Impact Assessments.
- 2. Analyze the impact of land-use changes on soil, water, and air quality.
- 3. Evaluate the environmental impact on vegetation, wildlife, and conduct risk assessments.
- 4. Develop environmental audit reports and assess compliance with environmental policies.
- 5. Interpret and apply environmental acts and regulations related to EIA.

CO – PO Articulation Matrix

Course	PO	P	P	P	PS	PS								
Outco	1	2	3	4	5	6	7	8	9	O	O	O	O1	O 2
mes										10	11	12		
CO -1	3	2	2	2	2	3	-	-	-	-	-	1	2	2
CO -2	3	3	3	2	2	3	-	-	-	-	-	1	3	2
CO -3	3	3	3	2	2	3	3	-	-	-	-	1	3	3
CO -4	3	3	3	3	2	3	3	-	-	-	-	1	3	3
CO -5	2	2	2	2	2	3	3	3	-	-	-	1	2	2

UNIT - I

Concepts and methodologies of EIA

Initial Environmental Examination, Elements of EIA, - Factors Affecting E-I-A Impact Evaluation and Analysis, Preparation of Environmental Base Map, Classification of Environmental Parameters- Criteria for The Selection of EIA Methodology, E I A Methods, Ad-Hoc Methods, Matrix Methods, Network Method Environmental Media Quality Index Method, Overlay Methods and Cost/Benefit Analysis.

UNIT – II

Impact of Developmental Activities and Land Use

Introduction and Methodology for The Assessment of Soil and Ground Water, Delineation of Study Area, Identification of Actives. Procurement of Relevant Soil Quality, Impact Prediction, Assessment of Impact Significance, Identification and Incorporation of Mitigation Measures. E I Ain Surface Water, Air and Biological Environment: Methodology for The Assessment of Impacts On Surface Water Environment, Air

Pollution Sources, Generalized Approach for Assessment of Air Pollution Impact.

UNIT - III

Assessment of Impact On Vegetation, Wildlife and Risk Assessment

Introduction - Assessment of Impact of Development Activities On Vegetation and Wildlife, Environmental Impact of Deforestation - Causes and Effects of Deforestation - Risk Assessment and Treatment of Uncertainty-Key Stages in Performing An Environmental Risk Assessment- Advantages of Environmental Risk Assessment.

UNIT – IV

Environmental Audit

Introduction - Environmental Audit & Environmental Legislation Objectives of Environmental Audit, Types of Environmental Audit, Audit Protocol, Stages of Environmental Audit, Onsite Activities, Evaluation of Audit Data and Preparation of Audit Report

UNIT - V

Environmental Acts and Notifications

The Environmental Protection Act, The Water Preservation Act, The Air (Prevention & Control of Pollution Act), Wild Life Act - Provisions in The EIA Notification, Procedure for Environmental Clearance, Procedure for Conducting Environmental Impact Assessment Report- Evaluation of EIA Report. Environmental Legislation Objectives, Evaluation of Audit Data and Preparation of Audit Report. Post Audit Activities, ConceptofISO and ISO 14000.

TEXT BOOKS:

- 1. Environmental Impact Assessment Methodologies, by Y. Anjaneyulu, B. S. Publication, Hyderabad 2^{nd} edition 2011
- 2. Environmental Impact Assessment, by Canter Larry W., McGraw-Hill education Edi (1996)

REFRENCE BOOKS:

- 1. Environmental Engineering, by Peavy, H. S, Rowe, D. R, Tchobanoglous, G.Mc-Graw Hill International Editions, New York 1985.
- 2. Environmental Science and Engineering, by Suresh K. Dhaneja, S.K., Katania& Sons Publication, New Delhi
- 3. Environmental Science and Engineering, by J. Glynn and Gary W. Hein Ke, Prentice Hall Publishers.
- 4. Environmental Pollution and Control, by H. S. Bhatia, Galgotia Publication (P) Ltd, Delhi

Online Learning Resources:

https://archive.nptel.ac.in/courses/124/107/124107160/

IV B.Tech I Sem L-T-P-C 3-0-0-3

23A02704 SMART GRID TECHNOLOGIES (Open Elective- III)

Course Outcomes:

CO1: Understanding the Concept and Evolution of Smart Grids. L2

CO2: Analyzing Wide Area Monitoring System and Synchrophasor Technology. L4

CO3: Applying Smart Metering and Advanced Metering Infrastructure (AMI) Concepts. L3

CO4: Evaluating Information and Communication Technology (ICT) Systems in Smart Grids. L5

CO5: Designing Smart Grid Applications and Cybersecurity Measures. L6

UNIT I Introduction to Smart Grid:

Evolution of Electric Grid – Need for Smart Grid – Difference between conventional & smart grid – Overview of enabling technologies – International experience in Smart Grid deployment efforts – Smart Grid road map for India – Smart Grid Architecture.

UNIT II Wide Area Monitoring System:

Fundamentals of Synchro phasor Technology – concept and benefits of Wide Area Monitoring System – Structure and functions of Phasor Measuring Unit (PMU) and Phasor Data Concentrator (PDC) – Road Map for Synchrophasor applications (NAPSI) – Operational experience and Blackout analysis using PMU - Case study on PMU.

UNIT III Smart Meters:

Features and functions of Smart Meters – Functional specification – category of Smart Meters – Automatic Meter Reading (AMR) and Advanced Metering Infrastructure (AMI) drivers and benefits – AMI protocol – Demand Side Integration: Peak load, Outage and Power Quality management.

UNIT IV Information and Communication Technology:

Overview of Smart Grid Communication system – Modulation and Demodulation Techniques: Radio Communication – Mobile Communication – Power Line Communication – Optical Fibre Communication – Communication Protocol for Smart Grid.

UNIT V Smart Grid Applications and Cyber Security:

Applications: Overview and concept of Renewable Integration – Introduction to distributed generation - Role of Protective Relaying in Smart Grid – House Area Network – Advanced Energy Storage Technology: Flow battery – Fuel cell – SMES – Super capacitors – Plug – in Hybrid electric Vehicles - Cyber Security: Security issues in DG, Distribution Automation, AMI, Electric Vehicle Management Systems – Approach to assessment of smart grid cyber security risks – Methodologies. Cyber Security requirements – Smart Grid Information Model.

TEXT BOOKS:

- 1. James Momoh, "SMART GRID: Fundamentals of Design and Analysis", John Wiley and Sons, New York, 2012.
- 2. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", John Wiley & Sons, New Jersey, 2012.

REFERENCES:

- 1. Power Grid Corporation of India Limited, "Smart Grid Primer", 1st Edition, Power Grid Corporation of India Limited, Bangalore, India, 2013.
- 2. Fereidoon.P.Sioshansi, "Smart Grid Integrating Renewable, Distributed and Efficient Energy", 1st Edition, Academic Press, USA, 2011.

3. Stuart Borlase, "Smart Grids: Infrastructure, Technology and Solutions", 1st Edition, CRC Press Publication, England, 2013.

4. Phadke A G, Thorp J S, "Synchronized Phasor Measurements and Their Applications", 1st Edition, Springer, Newyork, 2012.

IV B.Tech I Sem $L-T-P-C \qquad \qquad 3-0-0-3$

(Open Elective-III)

Cou	rse objectives: The objectives of the course are to
1	Understand the fundamental concepts of prototyping and distinguish between traditional and rapid
	prototyping methods.
2	Demonstrate the working principles, materials, and applications of solid-, liquid-, and powder-based RP
	systems.
3	Define the processes and classifications of rapid tooling and reverse engineering techniques.
4	Identify common errors in 3D printing and evaluate pre-processing, processing, and post-processing issues.
5	Familiarize RP-related software and its role in applications such as design, manufacturing, and medical
	fields.

Co	Course Outcomes: On successful completion of the course, the student will be able to,						
1	Define and explain the evolution and need for rapid prototyping in modern product	L1,L2,L6					
1	development.						
2	Compare and contrast various 3D printing technologies based on working principles,	L2,L4					
	materials, and limitations.						
2	Apply knowledge of rapid tooling and reverse engineering techniques for industrial and	L3,L5,L6					
	design applications.						
4	Diagnose and interpret different types of errors encountered in 3D printing processes and	L2,L3,L5,					
4	recommend solutions.						
_	Use RP-specific software tools to manipulate STL files and prepare models for printing in	L1,L3,L6					
5	real-world scenarios.						

UNIT I Introduction to 3D Printing

Introduction to Prototyping, Traditional Prototyping Vs. Rapid Prototyping (RP), Need for time compression in product development, Usage of RP parts, Generic RP process, Distinction between RP and CNC, other related technologies, Classification of RP.

UNIT II Solid and Liquid Based RP Systems

Working Principle, Materials, Advantages, Limitations and Applications of Fusion Deposition Modelling (FDM), Laminated Object Manufacturing (LOM), Stereo lithography (SLA), Direct Light Projection System (DLP) and Solid Ground Curing (SGC).

UNIT III Powder Based & Other RP Systems

Powder Based RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Selective Laser Sintering (SLS), Direct Metal Laser Sintering (DMLS), Laser Engineered Net Shaping (LENS) and Electron Beam Melting (EBM).

Other RP Systems: Working Principle, Materials, Advantages, Limitations and Applications of Three Dimensional Printing (3DP), Ballastic Particle Manufacturing (BPM) and Shape Deposition Manufacturing (SDM).

UNIT IV Rapid Tooling & Reverse Engineering

Rapid Tooling: Conventional Tooling Vs. Rapid Tooling, Classification of Rapid Tooling, Direct and Indirect Tooling Methods, Soft and Hard Tooling methods.

Reverse Engineering (RE): Meaning, Use, RE – The Generic Process, Phases of RE Scanning, Contact Scanners and Noncontact Scanners, Point Processing, Application Geometric Model, Development

UNIT V

Errors in 3D Printing and Applications:

Pre-processing, processing and post-processing errors, Part building errors in SLA, SLS, etc. Software: Need for software, MIMICS, Magics, SurgiGuide, 3-matic, 3D-Doctor, Simplant,

Velocity2, VoXim, Solid View, 3DView, etc., software, Preparation of CAD models, Problems with STL files, STL file manipulation, RP data formats: SLC, CLI, RPI, LEAF, IGES, HP/GL, CT, STEP. Applications: Design, Engineering Analysis and planning applications, Rapid Tooling, Reverse Engineering, Medical Applications of RP.

Textbooks:

- 1. Chee Kai Chua and Kah Fai Leong, "3D Printing and Additive Manufacturing Principles and Applications" 5/e, World Scientific Publications, 2017.
- 2. Ian Gibson, David W Rosen, Brent Stucker, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2/e, 2010.

Reference Books:

- 1. Frank W.Liou, "Rapid Prototyping & Engineering Applications", CRC Press, Taylor & Francis Group, 2011.
- 2. Rafiq Noorani, "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley&Sons, 2006.

Online Learning Resources:

- NPTEL Course on Rapid Manufacturing.
- https://nptel.ac.in/courses/112/104/112104265/
- https://www.hubs.com/knowledge-base/introduction-fdm-3d-printing/
- https://slideplayer.com/slide/6927137/
- https://www.mdpi.com/2073-4360/12/6/1334
- https://www.centropiaggio.unipi.it/sites/default/files/course/material/2013-11-29%20-
- %20FDM.pdf
- https://lecturenotes.in/subject/197
- https://www.cet.edu.in/noticefiles/258_Lecture%20Notes%20on%20RP-ilovepdfcompressed.pdf
- https://www.vssut.ac.in/lecture notes/lecture1517967201.pdf
- https://www.youtube.com/watch?v=NkC8TNts4B4.

IV B.Tech I Sem L-T-P-C 3-0-0-3

Course Objectives:

- 1. To comprehend the architecture, operation, and configurations of the 8086 microprocessors.
- 2. To get familiar with 8086 programming concepts, instruction set, and assembly language development tools.
- 3. To study the interfacing of 8086 with memory, peripherals, and controllers for various applications.
- 4. To learn the architecture, instruction set, and programming of the 8051 microcontrollers.
- 5. To understand microcontroller interfacing techniques, peripheral programming, and processor comparisons.

Course Outcomes:

At the end of this course, the students will be able to

- 1. Gain knowledge on the architecture, operation, and configurations of the 8086 microprocessors.
- 2. Get familiar with 8086 programming concepts, instruction set, and assembly language development tools.
- 3. Know the interfacing of 8086 with memory, peripherals, and controllers for various applications.
- 4. Learn the architecture, instruction set, and programming of the 8051 microcontrollers.
- 5. Understand microcontroller interfacing techniques, peripheral programming, and processor comparisons.

UNIT I

8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, bus interfacing unit, execution unit, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration.

UNIT II

8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.

UNIT III

8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interrupt controllers.

UNIT IV

Microcontroller - Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V

Interfacing Microcontroller - Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory

Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors

Textbooks:

- 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rdEdition,1994.
- 2. K M Bhurchandi, A K Ray, Advanced Microprocessors and Peripherals, 3rd edition, McGraw Hill Education, 2017.
- 3. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd edition, Pearson, 2012.

References:

- 1. Ramesh S Gaonkar, Microprocessor Architecture Programming and Applications with the 8085, 6th edition, Penram International Publishing, 2013.
- 2. Kenneth J. Ayala, The 8051 Microcontroller, 3rd edition, Cengage Learning, 2004.

IV B.Tech I Sem

L	T	P	С
3	0	0	3

(Open Elective-III)

Course Outcomes:

After successful completion of this course, the students should be able to:

COs	Statements	Blooms level
CO1	Understand wavelets and wavelet basis and characterize continuous and discrete wavelet transforms	L2, L3
CO2	Illustrate the multi resolution analysis ad scaling functions	L3, L5
CO3	Implement discrete wavelet transforms with multirate digital filters	L3
CO4	Understand multi resolution analysis and identify various wavelets and evaluate their time - frequency resolution properties.	L2, L3
CO5	Design certain classes of wavelets to specification and justify the basis of the application of wavelet transforms to different fields	L3,L5

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	1
CO2	3	2	2	2	-	-	-	-	-	-	-	1
CO3	3	2	2	1	-	-	1	-	-	-	-	1
CO4	2	2	2	1	-	-	-	-	-	-	-	1
CO5	3	3	2	1	-	-	-	-	-	-	-	1

¹⁻Slightly, 2-Moderately, 3-Substantially.

UNIT – I: Wavelets (08)

Wavelets and Wavelet Expansion Systems - Wavelet Expansion- Wavelet Transform- Wavelet System- More Specific Characteristics of Wavelet Systems - Haar Scaling Functions and Wavelets - effectiveness of Wavelet Analysis - The Discrete Wavelet Transform- The Discrete-Time and Continuous Wavelet Transforms.

UNIT – II: A Multiresolution Formulation of Wavelet Systems (08)

Signal Spaces -The Scaling Function -Multiresolution Analysis - The Wavelet Functions - The Discrete Wavelet Transform- A Parseval's Theorem - Display of the Discrete Wavelet Transform and the Wavelet Expansion.

UNIT – III Filter Banks and the Discrete Wavelet Transform (08)

Analysis - From Fine Scale to Coarse Scale-Filtering and Down-Sampling or Decimating -Synthesis - From Coarse Scale to Fine Scale -Filtering and Up-Sampling or Stretching - Input Coefficients - Lattices and Lifting - -Different Points of View.

UNIT – IV Time-Frequency and Complexity (08)

Multiresolution versus Time-Frequency Analysis- Periodic versus Nonperiodic Discrete Wavelet Transforms -The Discrete Wavelet Transform versus the Discrete-Time Wavelet Transform-Numerical Complexity of the Discrete Wavelet Transform.

UNIT-V Bases and Matrix Examples

Bases, Orthogonal Bases, and Biorthogonal Bases -Matrix Examples - Fourier Series Example - Sine Expansion Example - Frames and Tight Frames - Matrix Examples -Sine Expansion as a Tight Frame Example.

TEXT BOOK:

- 1. C. Sidney Burrus, Ramesh A. Gopinath, "Introduction to Wavelets and Wavelets Transforms", Prentice Hall, (1997).
- 2. James S. Walker, "A Primer on Wavelets and their Scientific Applications", CRC Press, (1999)..

REFERENCES:

- 1. RaghuveerRao, "Wavelet Transforms", Pearson Education, Asia
- 2. C. S. Burrus, Ramose and A. Gopinath, Introduction to Wavelets and Wavelet Transform, Prentice Hall Inc.
- 1. http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html
- 2. http://www.wavelet.org/
- 3. http://www.math.hawaii.edu/~dave/Web/Amara's%20Wavelet%20Page.htm
- <u>4. https://jqichina.wordpress.com/wp-content/uploads/2012/02/ten-lectures-of-waveletsefbc88e5b08fe6b3a2e58d81e8aeb2efbc891.pdf</u>

IV B.Tech I Sem

23A56701a	SMART MATERIALS AND DEVICES	Credits
	(Common to all branches)	3-0-0:3
	Open Elective-III	

|--|

1	To provide exposure to smart materials and their engineering applications.
1	
	To impart knowledge on the basics and phenomenon behind the working of smart materials
3	To explain the properties exhibited by smart materials
4	To educate various techniques used to synthesize and characterize smart materials
5	To identify the required smart material for distinct applications/devices

UNIT I Introduction to Smart Materials

9H

Historical account of the discovery and development of smart materials, Shape memory materials, chromoactive materials, magnetorheological materials, photoactive materials, Polymers and polymer composites (Basics).

UNIT II Properties of Smart Materials

9H

Optical, Electrical, Dielectric, Piezoelectric, Ferroelectric, Pyroelectric and Magnetic properties of smart materials.

UNIT III Synthesis of Smart Materials

9H

Chemical route: Chemical vapour deposition, Sol-gel technique, Hydrothermal method, Mechanical alloying and Thin film deposition techniques: Chemical etching, Spray pyrolysis.

UNIT IV Characterization Techniques

9H

Powder X-ray diffraction, Raman spectroscopy (RS), UV-Visible spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM).

UNIT V Smart Materials based Devices

9H

Devices based on smart materials: Shape memory alloys in robotic hands, piezoelectric based devices, MEMS and intelligent devices.

Textbooks:

- 1. YaserDahman, Nanotechnology and Functional Materials for Engineers-, Elsevier, 2017
- 2. E. Zschech, C. Whelan, T. Mikolajick, Materials for Information Technology: Devices, Interconnects and Packaging Springer-Verlag London Limited 2005.

Reference Books:

- 1. Gauenzi, P., Smart Structures, Wiley, 2009.
- 2. MahmoodAliofkhazraei, Handbook of functional nanomaterials, Vol (1&2), Nova Publishers, 2014
- 3. Handbook of Smart Materials, Technologies, and Devices: Applications of Industry, 4.0, Chaudhery

MustansarHussain, Paolo Di Sia, Springer, 2022.

4. Fundamentals of Smart Materials, Mohsen Shahinpoor, Royal Society of Chemistry, 2020

NPTEL course link: https://onlinecourses.nptel.ac.in/noc22 me17/preview

	Course Outcomes	
CO1	Identify key discoveries that led to modern applications of shape memory materials,	L1,L2, L3,
COI	describe the two phases in shape memory alloys.	L4
CO2	Describe how different external stimuli (light, electricity, heat, stress, and	
	magnetism) influence smart material properties.	L1,L2, L3
CO3	Summarize various types of synthesis of smart materials	L1,L2, L3
CO4	Analyze various characterization techniques used for smart materials	L1,L2, L3

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1							
CO2	3	3	2	1	1							
CO3	3	3	1	1	1							
CO4	3	2	1	1	1							
CO5	3	3	1	1	-							

1-Slightly, 2-Moderately, 3-Substantially.

23A56701b	INTRODUCTON TO QUANTUM MECHANICS	L	T	P	С
	Open Elective - III	3	0	0	3

COURSE OBJECTIVES		

1	To understand the fundamental differences between classical and quantum mechanics.
2	To study wave-particle duality, uncertainty principle, and their implications.
3	To learn and apply Schrödinger equations to basic quantum systems.
4	To use operator formalism and mathematical tools in quantum mechanics.
5	To explore angular momentum, spin and their quantum mechanical representations.

UNIT- I: PRINCIPLES OF QUANTUM MECHANICS

Introduction: Limitations of classical Mechanics, Difficulties with classical theories of black body radiation and origin of quantum theory of radiation. Wave-particle duality: de Broglie wavelength, Heisenberg uncertainty principle. Schrödinger time independent and time dependent wave equation, Solution of the time dependent Schrödinger equation, Concept of stationary states, Physical significance of wave function (ψ), Orthogonal, Normalized and Orthonormal functions

UNIT- II: ONE DIMENSIONAL PROBLEMS AND SOLUTIONS

Potential step – Reflection and Transmission at the interface. Potential well: Square well potential with rigid walls, Square well potential with finite walls. Potential barrier: Penetration of a potential barrier (tunneling effect). Periodic potential and Harmonic oscillator, Energy eigen functions and eigen values.

UNIT-III: OPERATOR FORMALISM

Operators, Operator Algebra, Eigen values and Eigen vectors, Postulates of quantum mechanics, Matrix representation of wave functions and linear operators.

UNIT- IV: MATHEMATICAL TOOLS FOR QUANTUM MECHANICS

The concept of row and column matrices, Matrix algebra, Hermitian operators – definition. Dirac's bra and ket notation, Expectation values, Heisenberg (operator) representation of harmonic oscillator, Ladder operators and their significance.

UNIT- V: ANGULAR MOMENTUM AND SPIN

Angular momentum operators: Definition. Eigen functions and Eigen values of AM operators. Matrix representation of angular momentum operators, System with spin half(1/2), Spin angular momentum, Pauli's spin matrices. Clebsch-Gordon coefficients. Rigid Rotator: Eigen functions and Eigen values.

BOOKS FOR STUDY:

- 1. Quantum Mechanics. Vol 1, A. MessaiaNoth-Holland Pub. Co., Amsterdam, (1961).
- **2.** A Text Book of Quantum Mechanics. P.M.Mathews and K.Venkatesam, Tata McGraw Hill, New Delhi,(1976).
- **3.** Introduction to Quantum Mechanics. R.H.Dicke and J.P.Witke, Addison-Wisley Pub.Co.Inc.,London, (1960).
- **4.** Quantum Mechanics. S.L.Gupta, V.Kumar, H.V.Sarama and R.C.Sharma, Jai PrakashNath& Co, Meerut, (1996).

REFERENCE BOOKS:

- 1. Quantum Mechanics. L.I. Schiff, McGraw Hill Book Co., Tokyo, (1968).
- **2.** Introduction to Quantum Mechanics. Richard L. Liboff, Pearson Education Ltd (Fourth Edn.) 2003.

CourseOutcomes	Blooms
	Level

	After completing this course, students will be able to:	
CO1	Explain the key principles of quantum mechanics and wave-particle duality	L1, L2
CO2	Apply Schrödinger equations to solve one-dimensional quantum problems	L3, L4
CO3	Solve quantum mechanical problems using operator and matrix methods.	L2, L4
CO4	Evaluate quantum states using Dirac notation and expectation values.	L5
CO5	Analyze angular momentum and spin systems using Pauli matrices and operators.	L4, L5

NPTEL courses link:

- $\textbf{4.} \quad \underline{\textbf{https://archive.nptel.ac.in/courses/115/101/115101107/}}$
- 5. https://archive.nptel.ac.in/courses/122/106/122106034/
 6. https://nptel.ac.in/courses/115106066

CourseArticulationMatrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2							
CO2	3	2	2	1	1							
CO3	3	3	2	1	1							
CO4	3	3	3	2	3							
CO5	3	3	1	1	1		·					

1-Slightly, 2-Moderately, 3-Substantially.

IV B.Tech I Sem

23A51701	GREEN CHEMISTRY AND CATALYSIS FOR	Credits
	SUSTAINABLE ENVIRONMENT	3-0-0:3
	(Common to all branches)	
	Open Elective-III	

Course Objectives										
1	TO UNDERSTAND PRINCIPLE AND CONCEPTS OF GREEN									
	CHEMISTRY.									
2	TO UNDERSTAND THE TYPES OF CATALYSIS AND INDUSTRIAL APPLICATIONS.									
3	TO APPLY GREEN SOLVENTS IN CHEMICAL SYNTHESIS.									
4	TO ENUMERATE DIFFERENT SOURCED OF GREEN ENERGY.									
5	TO APPLY ALTERNATIVE GREENER METHODS FOE CHEMICAL REACTIONS									

	Course Outcomes								
>	Apply the Green chemistry Principles for day to day life as well as synthesis, describe								
CO1	the sustainable development and green chemistry, Explain economic and un-economic								
	reactions, Demonstrate Polymer recycling.								
>	Explain Heterogeneous catalyst and its applications in Chemical and Pharmaceutical								
CO2	Industries, Differentiate Homogeneous and Heterogeneous catalysis, Identify the								
LU2	importance of Bio and Photo Catalysis, Discuss Transition metal and Phase transfer								
	Catalysis								
CO3	Demonstrate Green solvents and importance, Discuss Supercritical carbondioxide,								
C03	Explain Supercritical water, recycling of green solvents.								
>	Describe importance of Biomass and Solar Power, Illustrate Sonochemistry, Apply								
CO4	Green Chemistry for Sustainable Development; discuss the importance of Renewable								
	resources, mechanochemical synthesis.								
>	Discuss Alternative green methods like Photoredox catalysis, single electron transfer								
CO5	reactions (SET), Photochemical Reactions, Microwave-assisted Reactions and								
	Sonochemical reactions, examples and applications.								

Mapping between Course Outcomes and Programme Outcomes

	PO1	PO2	РО3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5							·					

UNIT 1: PRINCIPLES AND CONCEPTS OF GREEN CHEMISTRY

Introduction, Green chemistry Principles, sustainable development and green chemistry, E factor, atom economy, atom economic Reactions: Rearrangement and addition reactions and atom uneconomic reactions: Substitution, elimination and Wittig reactions, Reducing Toxicity. Waste - problems and Prevention: Design for degradation, Polymer recycling

UNIT 2: CATALYSIS AND GREEN CHEMISTRY

Introduction, Types of catalysis, Heterogeneous catalysis: Basics of Heterogeneous Catalysis, Zeolite and the Bulk Chemical Industry, Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries, Catalytic Converters, Homogeneous catalysis: Transition Metal Catalysts with Phosphine Ligands, Greener Lewis Acids, and Phase transfer catalysis, Bio-catalysis and Photo-catalysis with examples.

UNIT 3: GREEN SOLVENTS IN CHEMICAL SYNTHESIS

Green Solvents: Concept, Tools and techniques for solvent selection, supercritical fluids: Super critical carbondioxide, super critical water, Polyethylene glycol (PEG), Ionic liquids, Recyling of green solvents.

UNIT 4: EMERGING GREENER TECHNOLOGIES

Biomass as renewable resource, Energy: Energy from Biomass, Solar Power, Chemicals from Renewable Feedstock's, Chemicals from Fatty Acids, Polymers from Renewable Resources, Alternative Economies: The Syngas Economy, The Biorefinery, Design for energy efficiency, Mechanochemical synthesis.

UNIT 5: ALTERNATIVE GREENER METHODS

Photochemical Reactions - Examples, Advantages and Challenges, Photoredox catalysis, single electron transfer reactions (SET), Examples of Photochemical Reactions, Microwave-assisted Reactions and Sonochemical reactions, examples and applications.

Text Books:

- 1. M. LANCASTER, GREEN CHEMISTRY AN INTRODUCTORY TEXT, ROYAL SOCIETY OF CHEMISTRY, 2002.
- 2. PAUL T. ANASTAS AND JOHN C. WARNER, GREEN CHEMISTRY THEORY AND PRACTICE, 4^{TH} EDITION,

OXFORD UNIVERSITY PRESS, USA

References:

- Green Chemistry for Environmental Sustainability, First Edition, Sanjay K. Sharma and AckmezMudhoo, CRC Press, 2010.
- 2. Edited by AlvisePerosa and Maurizio Selva , Hand Book of Green chemistry Volume 8:

Green Nanoscience, wiley-VCH, 2013.

IV B.Tech I Sem

Course Code	EMPLOYABILITY SKILLS	L	T	P	C
23A52703	OPEN ELECTIVE-III	3	0	0	3

Course Objectives:

- To encourage all round development of the students by focusing on productive skills
- To make the students aware of Goal setting and writing skills
- To enable them to know the importance of presentation skills in achieving desired goals.
- To help them develop organizational skills through group activities

To function effectively with heterogeneous teams

Course Outcomes (CO):		Blooms Level				
CO1: Understand the importance of goals and try to achieve them L1, L2						
CO2: Explain the signific	ance of self-management	L1, L2				
CO3: Apply the knowleds	ge of writing skills in preparing eye-catchy resumes	L3				
CO4: Analyse various for	ms of Presentation skills	L4				
CO5: Judge the group behaviour appropriately L5						
CO6: Develop skills required for employability. L3, L6						
UNIT - I	Goal Setting and Self-Management	Lecture Hrs				

 $Definition, importance, types \ of \ Goal \ Setting-SMART \ Goal \ Setting-Advantages-Motivation-Intrinsic \ and \ Extrinsic \ Motivation-Self-Management-Knowing \ about \ self-SWOC \ Analysis$

UNIT - II Writing Skills Lecture Hrs

Definition, significance, types of writing skills – Resume writing Vs CV Writing - E-Mail writing, Cover Letters - E-Mail Etiquette -SoP (Statement of Purpose)

UNIT - III **Technical Presentation Skills** Lecture Hrs

Nature, meaning & significance of Presentation Skills – Planning, Preparation, Presentation, Stage Dynamics – Anxiety in Public speaking (Glossophobia)- PPT & Poster Presentation

UNIT - IV Group Presentation Skills Lecture Hrs

Body Language – Group Behaviour - Team Dynamics – Leadership Skills – Personality Manifestation- Group Discussion-Debate –Corporate Etiquette

UNIT - V **Job Cracking Skills** Lecture Hrs

Nature, characteristics, importance & types of Interviews – Job Interviews – Skills for success – Job searching skills - STAR method - FAQs- Answering Strategies – Mock Interviews

Textbooks

1. Sabina Pillai, Agna Fernandez. Soft Skills & Employability Skills,2014. Cambridge Publisher.

2. Alka Wadkar. Life Skills for Success, Sage Publications, 2016.

Reference Books:

- Gangadhar Joshi. Campus to Corporate Paperback , Sage Publications. 2015
- 2. <u>Sherfield Montogomery Moody</u>, *Cornerstone Developing Soft Skills*, Pearson Publications. 4 Ed. 2008
- 3. Shikha Kapoor. *Personality Development and Soft Skills Preparing for Tomorrow* .1 Edition, Wiley, 2017.
- 4. M. Sen Gupta, *Skills for Employability*, Innovative Publication, 2019.
- 5. Steve Duck and David T McMahan, *The Basics f Communication Skills A Relational Perspective*, Sage press, 2012.

Online Learning Resources:

- 10. https://youtu.be/gkLsn4ddmTs
- 11. https://youtu.be/2bf9K2rRWwo

- **12.** https://youtu.be/FchfE3c2jzc
- 13. https://youtu.be/xBaLgJZ0t6A?list=PLzf4HHlsQFwJZel_j2PUy0pwjVUgj7KlJ
- **14.** https://www.youtube.com/c/skillopedia/videos
- **15.** https://onlinecourses.nptel.ac.in/noc25 hs96/preview
- **16.** https://onlinecourses.nptel.ac.in/noc21 hs76/preview
- 17. https://archive.nptel.ac.in/courses/109/107/109107172/#
- **18.** https://archive.nptel.ac.in/courses/109/104/109104107/

Course Code	GEO-SPATIAL	L	Т	P	С
23A01705A	TECHNOLOGIES	3	0	0	3
25A01/05A	(OPEN ELECTIVE – IV)				

Course Objectives:

The objectives of this course are to make the student :

- 1. To understand raster-based spatial analysis techniques, including query, overlay, and cost-distance analysis.
- 2. To analyze vector-based spatial analysis techniques such as topology, overlay, and proximity analysis.
- 3. To apply network analysis techniques for geocoding, shortest path analysis, and location-allocation problems.
- 4. To evaluate surface and geostatistical analysis methods, including terrain modeling, watershed analysis, and spatial interpolation.
- 5. To assess GIS customization, Web GIS, and mobile mapping techniques for real-world applications.

Course Outcomes:

Upon successful completion of the course, students will be able to:

- 1. Understand raster-based spatial analysis techniques, including query, overlay, and cost-distance analysis.
- 2. Analyze vector-based spatial analysis techniques such as topology, overlay, and proximity analysis.
- 3. Apply network analysis techniques for geocoding, shortest path analysis, and location-allocation problems.
- 4. Evaluate surface andgeostatistical analysis methods, including terrain modeling, watershed analysis, and spatial interpolation.
- 5. Assess GIS customization, Web GIS, and mobile mapping techniques for real-world applications.

CO – PO Articulation Matrix

Course	PO	P	P	P	PS	PS								
Outco	1	2	3	4	5	6	7	8	9	O	O	O	01	O 2
mes										10	11	12		
CO -1	3	-	-	-	2	-	-	-	-	-	-	-	3	3
CO -2	3	3	-	-	2	-	-	-	-	-	-	2	3	3
CO -3	3	-	3	2	3	-	-	-	-	-	-	-	3	3
CO -4	-	-	3	3	3	-	2	-	-	-	-	-	3	3
CO -5	-	-	-	-	3	3	3	2	-	-	-	-	3	3

UNIT – I

RASTER ANALYSIS

Raster Data Exploration: Query Analysis - Local Operations: Map Algebra, Reclassification, Logical and Arithmetic Overlay Operations—Neighborhood - Operations: Aggregation, Filtering — Extended Neighborhood-Operations - Zonal Operations - Statistical Analysis — Cost-Distance Analysis-Least Cost Path.

UNIT – II		
VECTOR ANALYSIS		

Non-Topological Analysis: Attribute Database Query, Structured Query Language, Co-Ordinate Transformation, Summary Statistics, Calculation of Area, Perimeter and Distance – topological Analysis: Reclassification, Aggregation, Overlay Analysis: Point-In-Polygon, Line-In-Polygon, Polygon-On-Polygon: Clip, Erase, Identity, Union, Intersection – Proximity Analysis: Buffering

UNIT – III

NETWORK ANALYSIS

Network – Introduction - Network Data Model – Elements of Network - Building A Network Database - Geocoding – Address Matching - Shortest Path in A Network – Time and Distance Based Shortest Path Analysis – Driving Directions – Closest Facility Analysis – Catchment / Service Area Analysis-Location-Allocation Analysis

UNIT - IV

SURFACE and GEOSTATISTICAL ANALYSIS

Surface Data – Sources of X,Y, Z Data – DEM, TIN – Terrain Analysis – Slope, Aspect, Viewshed, Watershed Analysis: Watershed Boundary, Flow Direction, Flow Accumulation, Drainage Network, Spatial Interpolation: IDW, Spline, Kriging, Variogram.

UNIT - V

CUSTOMISATION, WEB GIS, MOBILE MAPPING

Customisation of GIS: Need, Uses, Scripting Languages –Embedded Scripts – Use of Python Script - Web GIS: Web GIS Architecture, Advantages of Web GIS, Web Applications- Location Based Services: Emergency and Business Solutions - Big Data Analytics.

TEXT BOOKS:

- 1. Kang Tsung Chang, Introduction to Geographical Information System, 4th Ed., Tata McGraw Hill Edition, 2008.
- 2. Lo, C.P. and Yeung, Albert K.W., Concepts and Techniques of Geographic Information Systems Prentice Hall, 2002.

REFRENCE BOOKS:

- 1. Michael N. Demers, Fundamentals of Geographic Information Systems, Wiley,2009
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasaraju, "An Introduction to Geographical Information Systems, Pearson Education, 2nd Edition, 2007.
- 3. John Peter Wilson, The Handbook of Geographic Information Science, Blackwell Pub., 2008

Online Learning Resources:

https://archive.nptel.ac.in/courses/105/105/105105202/ https://onlinecourses.nptel.ac.in/noc19 cs76/preview

Course Code	SOLID WASTE	L	T	P	С
22 A 01 70 E D	MANAGEMENT	3	0	0	3
23A01705B	(OPEN ELECTIVE – IV)				

Course Objectives:

The objectives of this course are to make the student :

- 1. To understand the types, sources, and characteristics of solid waste, along with regulatory frameworks.
- 2. To analyze engineering systems for solid waste collection, storage, and transportation.
- 3. To apply resource and energy recovery techniques for sustainable solid waste management.
- 4. To evaluate landfill design, construction, and environmental impact mitigation strategies.
- 5. To assess hazardous waste management techniques, including biomedical and e-waste disposal.

Course Outcomes:

- 1. Understand the types, sources, and characteristics of solid waste, along with regulatory frameworks.
- 2. Analyze engineering systems for solid waste collection, storage, and transportation.
- 3. Apply resource and energy recovery techniques for sustainable solid waste management.
- 4. Evaluate landfill design, construction, and environmental impact mitigation strategies.
- 5. Assess hazardous waste management techniques, including biomedical and e-waste

CO – PO	CO – PO Articulation Matrix													
Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	P	P	P	PS	PS
Outco	1	2	3	4	5	6	7	8	9	O	0	0	01	O 2
mes										10	11	12		
CO -1	3	-	-	-	2	-	2	-	-	-	-	-	3	3
CO -2	3	3	-	-	2	-	3	-	-	-	-	2	3	3
CO -3	3	-	3	2	3	-	3	-	-	-	-	-	3	3
CO -4	-	-	3	3	3	-	3	2	-	-	-	-	3	3
CO -5	_	_	_	_	3	3	3	3	_	-	-	-	3	3

UNIT – I

Solid Waste: Definitions, Types of Solid Wastes, Sources of Solid Wastes, Characteristics, and Perspectives; Properties of Solid Wastes, Sampling of Solid Wastes, Elements of Solid Waste Management - Integrated Solid Waste Management, Solid Waste Management Rules 2016.

UNIT – II

Engineering SystemsforSolid Waste Management: Solid Waste Generation; On-Site Handling, Storage and Processing; Collection of Solid Wastes; Stationary Container System and Hauled Container Systems – Route Planning - Transfer and Transport; Processing Techniques;

U	I	11	_	111	

Engineering Systems for Resource and Energy Recovery: Processing Techniques;

Materials Recovery Systems; Recovery of Biological Conversion Products – Composting, Pre and Post Processing, Types of Composting, Critical Parameters, Problems With Composing - Recovery of Thermal Conversion Products; Pyrolisis, Gasification, RDF - Recovery of Energy From Conversion Products; Materials and Energy Recovery Systems.

UNIT – IV

Landfills: Evolution of Landfills – Types and Construction of Landfills – Design Considerations – Life of Landfills- Landfill Problems – Lining of Landfills – Types of Liners – Leachate Pollution and Control – Monitoring Landfills – Landfills Reclamation.

UNIT - V

Hazardous Waste Management: – Sources and Characteristics, Effects On Environment, Risk Assessment – Disposal of Hazardous Wastes – Secured Landfills, Incineration - Monitoring – Biomedical Waste Disposal, E-Waste Management, Nuclear Wastes, Industrial Waste Management

TEXT BOOKS:

- 1. Tchobanoglous G, Theisen H and Vigil SA 'Integrated Solid Waste Management, Engineering Principles and Management Issues' McGraw-Hill, 1993.
- 2. Vesilind PA, Worrell W and Reinhart D, 'Solid Waste Engineering' Brooks/Cole Thomson Learning Inc., 2002.

REFRENCE BOOKS:

- 1. Peavy, H.S, Rowe, D.R., and G. Tchobanoglous, 'Environmental Engineering', McGraw Hill Inc., New York, 1985.
- 2. Qian X, Koerner RM and Gray DH, 'Geotechnical Aspects of Landfill Design and Construction' Prentice Hall, 2002.

Online Learning Resources:

https://archive.nptel.ac.in/courses/105/103/105103205/https://archive.nptel.ac.in/courses/120/108/120108005/

IV B. Tech I Sem L-T-P-

23A02705 ELECTRIC VEHICLES (Open Elective -IV)

Course Objectives: To make the student

- Remember and understand the differences between conventional Vehicle and Electric Vehicles, electro mobility and environmental issues of EVs.
- Analyze various EV configurations, parameters of EV systems and Electric vehicle dynamics.
- Analyze the basic construction, operation and characteristics of fuel cells and battery charging techniques in HEV systems.
- •Design and analyze the various control structures for Electric vehicle.

Course Outcomes (CO): Student will be able to

- CO 1: To understand and differentiate between Conventional Vehicle and Electric Vehicles, electro mobility and environmental issues of EVs. -L2
- CO 2: Understand Various dynamics of Electric Vehicles. -L2
- CO 3: To remember and understand various configurations in parameters of EV system and dynamic aspects of EV. -L1
- CO 4: To analyze fuel cell technologies in EV and HEV systems. -L3
- CO 5: To analyze the battery charging and controls required of EVs. -L3

UNIT I Introduction to EV Systems and Energy Sources:

Past, Present and Future of EV - EV Concept- EV Technology- State-of-the Art of EVs- EV configuration- EV system- Fixed and Variable gearing- Single and multiple motor drive- In-wheel drives- EV parameters: Weight, size, force and energy, performance parameters. Electro mobility and the environment- History of Electric power trains- Carbon emissions from fuels- Green houses and pollutants- Comparison of conventional, battery, hybrid and fuel cell electric systems.

UNIT II EV Propulsion and Dynamics:

Choice of electric propulsion system- Block diagram- Concept of EV Motors- Single and multimotor configurations- Fixed and variable geared transmission- In-wheel motor configuration- Classification - Electric motors used in current vehicle applications - Recent EV Motors- Vehicle load factors- Vehicle acceleration.

UNIT III Fuel Cells:

Introduction of fuel cells- Basic operation- Model - Voltage, power and efficiency- Power plant system - Characteristics- Sizing - Example of fuel cell electric vehicle - Introduction to HEV- Brake specific fuel consumption - Comparison of Series-Parallel hybrid systems- Examples.

UNIT IV Battery Charging and Control:

Battery charging: Basic requirements- Charger architecture- Charger functions- Wireless charging-Power factor correction.

Control: Introduction- Modeling of electro mechanical system- Feedback controller design approach- PI controller's designing- Torque-loop, Speed control loop compensation- Acceleration of battery electric vehicle.

UNIT V Energy Storage Technologies:

Role of Energy Storage Systems- Thermal- Mechanical-Chemical- Electrochemical- Electrical - Efficiency of energy storage systems- Super capacitors-Superconducting Magnetic Energy Storage (SMES)- SOC- SoH -fuel cells - G2V- V2G- Energy storage in Micro-grid and Smart grid- Energy Management with storage systems- Battery SCADA

Textbooks:

1.C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001,1st Edition

2. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, 2017,1st Edition

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2021, 3rd Edition.
- 2.Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt," Energy Storage in Power Systems" Wiley Publication, ISBN: 978-1-118-97130-7, Mar 2016,1st Edition
- 3.A.G.Ter-Gazarian, "Energy Storage for Power Systems", the Institution of Engineering and Technology (IET) Publication, UK, (ISBN 978-1-84919-219-4), Second Edition, 2011.
- 4.Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Elelctric, Hybrid Elelctric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004,1st Edition
- 5.James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003,2nd Edition.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/108/102/108102121/
- 2. https://nptel.ac.in/syllabus/108103009

IV B.Tech I Sem

23A03705 TOTAL QUALITY MANAGEMENT (Open Elective-IV).

	Course objectives: The objectives of the course are to						
	1	Familiarize the basic concepts of Total Quality Management.					
	2	Expose with various quality issues in Inspection.					
	3	Gain Knowledge on quality control and its applications to real time					
Γ	4 Understand the extent of customer satisfaction by the application of various quality concepts.						
	5	Demonstrate the importance of Quality standards in Production					

Co	Course Outcomes: On successful completion of the course, the student will be able to,							
1	Define and develop on quality Management philosophies and analyze quality costs	L1,L3,L4						
	frameworks.							
2	Understanding of the historical development of Total Quality Management (TQM),	L2, L3,L6						
	implementation, and real-world applications through case studies.							
3	Evaluate the cost of poor quality, process effectiveness and efficiency to analyze areas for	L2,L4,L5						
	improvement.							
4	Apply benchmarking and business process reengineering to improve management	L3,L5,L6						
	processes.							
5	Demonstrate the set of indications to evaluate performance excellence of an organization	L1,L2,L5						

UNIT – I Introduction:

Definition of Quality, Dimensions of Quality, Definition of Total quality management, Quality Planning, Quality costs – Analysis, Techniques for Quality costs, Basic concepts of Total Quality Management.

UNIT - II Historical Review:

Historical Review: Quality council, Quality statements, Strategic Planning, Deming Philosophy, Barriers of TQM Implementation, Benefits of TQM, Characteristics of successful quality leader, Contributions of Gurus of TQM, Case studies.

UNIT – III TQM Principles:

Customer Satisfaction – Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement – Motivation, Empowerment teams, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, Kaizen, Supplier Partnership – Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures Basic Concepts, Strategy, Performance Measure Case studies.

UNIT - IV TOM Tools:

Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) – Concept, Improvement Needs, FMEA – Stages of FMEA, The seven tools of quality, Process capability, Concept of Six Sigma, New Seven management tools, Case studies.

UNIT – V Quality Systems:

Need for ISO 9000 and Other Quality Systems, ISO 9000: 2000 Quality System – Elements, Implementation of Quality System, Documentation, Quality Auditing, QS 9000, ISO 14000 – Concept, Requirements and Benefits, Case Studies.

Text Books:

1.Dale H Besterfield, Total Quality Management, Fourth Edition, Pearson Education, 2015.

2.Subburaj Ramaswamy, Total Quality Management, Tata Mcgraw Hill Publishing Company Ltd., 2005.

3. Joel E.Ross, Total Quality Management, Third Eition, CRC Press, 2017.

Reference Books:

- 1.Narayana V and Sreenivasan N.S, Quality Management Concepts and Tasks, New Age International, 1996.
- 2. Robert L. Flood, Beyond TQM, First Edition, John Wiley & Sons Ltd, 1993.
- 3.Richard S. Leavenworth & Eugene Lodewick Grant, Statistical Quality Control, Seventh Edition, Tata Mcgraw Hill, 2015
- 4.Samuel Ho, TQM An Integrated Approach, Kogan Page Ltd, USA, 1995.

Online Learning Resources:

- https://www.youtube.com/watch?v=VD6tXadibk0
- https://www.investopedia.com/terms/t/total-quality-management-tqm.asp
- https://blog.capterra.com/what-is-total-quality-management/
- https://nptel.ac.in/courses/110/104/110104080/
- https://onlinecourses.nptel.ac.in/noc21_mg03/preview
- https://nptel.ac.in/courses/110/104/110104085/
- https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-mg39/

IV B.Tech I Sem L-T-P-C 3-0-0-3

23A04704

TRANSDUCERS AND SENSORS (Open Elective –IV)

Course Objectives:

- 1. To understand characteristics of Instrumentation System and the operating principle of motion transducers.
- 2. To explore working principles, and applications of different temperature transducers and Piezo-electric sensors.
- 3. To provide knowledge on flow transducers and their applications.
- 4. To study the working principles of pressure transducers.
- 5. To introduce working principle and applications of force and sound transducers.

Course Outcomes:

After completing the course, the student will be able to,

- 1. Understand characteristics of Instrumentation System and the operating principle of motion transducers.
- 2. Explore working principles, and applications of different temperature transducers and Piezo-electric sensors.
- 3. Gain knowledge on flow transducers and their applications.
- 4. Learn the working principles of pressure transducers.
- 5. Understand the working principle and applications of force and sound transducers.

UNIT I

Introduction: General Configuration and Functional Description of measuring instruments, Static and Dynamic Characteristics of Instrumentation System, Errors in Instrumentation System, Active and Passive Transducers and their Classification.

Motion Transducers: Resistive strain gauge, LVDT, RVDT, Capacitive transducers, Piezo-electric transducers, seismic displacement pick-ups, vibrometers and accelerometers.

UNIT II

Temperature Transducers: Standards and calibration, fluid expansion and metal expansion type transducers - bimetallic strip, Thermometer, Thermistor, RTD, Thermocouple and their characteristics.

Hall effect transducers, Digital transducers, Proximity devices, Bio-sensors, Smart sensors, Piezo-electric sensors.

UNIT III

Flow Transducers: Bernoulli's principle and continuity, Orifice plate, Nozzle plate, Venture tube, Rotameter, Anemometers, Electromagnetic flow meter, Impeller meter and Turbid flow meter.

UNIT IV

Pressure Transducers: Standards and calibration, different types of manometers, elastic transducers, diaphragm bellows, bourdon tube, capacitive and resistive pressure transducers, high and low pressure measurement.

UNIT V

Force and Sound Transducers: Proving ring, hydraulic and pneumatic load cell, dynamometer and gyroscopes. Sound level meter, sound characteristics, Microphone.

TEXT BOOKS

- 1. A.K. Sawhney, "A course in Electrical and Electronics Measurements and Instrumentation", Dhanpat Rai& Co. 3rd edition Delhi, 2010.
- 2. Rangan C.S, Sarma G.R and Mani V S V, "Instrumentation Devices and Systems", TATA McGraw Hill publications, 2007.

REFERENCE BOOKS

- 1. Doebelin. E.O, "Measurement Systems Application and Design", McGraw Hill International, New York, 2004.
- 2. Nakra B.C and Chaudhary K.K , "Instrumentation Measurement and Analysis", Second Edition, Tata McGraw-Hill Publication Ltd. 2006.

TV	RТ	Cach	T	Sem

L	T	P	С
3	0	0	3

23A54702 FINANCIAL MATHEMATICS (Open Elective-IV)

Course Objectives:

- 1. To provide mathematical foundations for financial modelling, risk assessment and asset pricing.
- 2. To introduce stochastic models and their applications in pricing derivatives and interest rate modelling.
- 3. To develop analytical skills for fixed-income securities, credit risk, and investment strategies.
- 4. To equip students with computational techniques for pricing financial derivatives.

Course Outcomes:

After successful completion of this course, the students should be able to:

COs	Statements	Blooms level
CO1	Explain fundamental financial concepts, including arbitrage, valuation, and risk.	L2 (Understand)
CO2	Apply stochastic models, including Brownian motion and Stochastic Differential Equations (SDEs), in financial contexts.	L3 (Apply)
CO3	Analyze mathematical techniques for pricing options and financial derivatives.	L4 (Analyze)
CO4	Evaluate interest rate models and bond pricing methodologies.	L5 (Evaluate)
CO5	Utilize computational techniques such as Monte Carlo simulations for financial modeling.	L3 (Apply)

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2	-	1	1	-	-	-	-	1	2	1
CO 2	3	3	2	2	2	-	-	-	-	1	1	1
CO 3	3	3	3	3	2	1	-	-	-	-	3	2
CO 4	3	3	3	3	1	-	-	-	-	-	2	1
CO 5	3	3	3	3	3	-	-	-	-	-	2	2

^{• 3 =} Strong Mapping, 2 = Moderate Mapping, 1 = Slight Mapping, - = No Mapping

UNIT-I: Asset Pricing and Risk Management

(80)

Fundamental financial concepts: Returns, arbitrage, valuation, and pricing. Asset/Liability management, investment income, capital budgeting, and contingent cash flows. One-period model:

Securities, payoffs, and the no-arbitrage principle. Option contracts: Speculation and hedging strategies, CAP Model, Efficient market hypothesis.

UNIT-II: Stochastic Models in Finance

(80)

Random Walks and Brownian Motion. Introduction to Stochastic Differential Equations (SDEs): Drift and diffusion. Ito calculus: Ito's Lemma, Ito Integral, and Ito Isometry.

UNIT-III: Interest Rate and Credit Modelling

(80)

Interest rate models and bond markets. Short-rate models: Vasicek, Cox-Ingersoll-Ross (CIR), Hull & White models, Credit risk modelling: Hazard function and hazard rate.

UNIT-IV: Fixed-Income Securities and Bond Pricing

(80)

Characteristics of fixed-income products: Yield, duration, and convexity. Yield curves, forward rates, and zero-coupon bonds. Stochastic interest rate models and bond pricing PDE. Yield curve fitting and calibration techniques, Mortgage Backed Securities.

UNIT-V: Exotic Options and Computational Finance

(80)

Stochastic volatility models and the Feynman-Kac theorem. Exotic options: Barriers, Asians, and Look backs. Monte Carlo methods for derivative pricing, Black-Scholes-Merton model: Derivation and applications.

Textbooks:

- 1. Ales Cerny, *Mathematical Techniques in Finance: Tools for Incomplete Markets*, Princeton University Press.
- 2. S.R. Pliska, *Introduction to Mathematical Finance: Discrete-Time Models*, Cambridge University Press.

Reference Books:

- 1. IoannisKaratzas& Steven E. Shreve, *Methods of Mathematical Finance*, Springer, New York.
- 2. John C. Hull, Options, Futures, and Other Derivatives, Pearson.

Web References:

- MIT– Mathematics for Machine Learning https://ocw.mit.edu
- Coursera Financial Engineering and Risk Management (Columbia University) https://www.coursera.org/
- National Stock Exchange (NSE) India Financial Derivatives https://www.nseindia.com/

IV B.Tech I Sem

	SENSORS AND ACTUATORS FOR	L	T	P	C
23A56702	ENGINEERING APPLICATIONS				
23A30702	(Open Elective-IV)	3	0	0	3
	(Common to all branches)				

	COURSE OBJECTIVES							
1	To provide exposure to various kinds of sensors and actuators and their engineering							
	applications.							
2	To impart knowledge on the basic laws and phenomenon behind the working of sensors and							
	actuators							
3	To explain the operating principles of various sensors and actuators							
4	To educate the fabrication of sensors							
5	To explain the required sensor and actuator for interdisciplinary application							

UNIT I Introduction to Sensors and Actuators

9H

Sensors: Types of sensors: temperature, pressure, strain, active and passive sensors, General characteristics of sensors (Principles only), Deposition: Chemical Vapor Deposition, Pattern: photolithography and Etching: Dry and Wet Etching.

Actuators: Functional diagram of actuators, Types of actuators and their basic principle of working: Pneumatic, Electromagnetic, Piezo-electric and Piezo-resistive actuators, Applications of Actuators.

UNIT II Temperature and Mechanical Sensors

9H

Temperature Sensors: Types of temperature sensors and their basic principle of working: Thermoresistive sensors: Thermocouples, PN junction temperature sensors

Mechanical Sensors: Types of Mechanical sensors and their basic principle of working: Force sensors: Strain gauges, Tactile sensors, Pressure sensors: Piezoresistive, Variable Reluctance Sensor (VRP).

UNIT III Optical and Acoustic Sensors

9H

Optical Sensors: Basic principle and working of: Photodiodes, Phototransistors and Photo resistors based sensors, Photomultipliers, Infrared sensors: thermal, Passive Infra-Red, Fiber based sensors and Thermopiles

Acoustic Sensors: Principle and working of Ultrasonic sensors, Piezo-electric resonators, Microphones

UNIT IV Magnetic and Electromagnetic Sensors

9H

Motors as actuators (linear, rotational, stepping motors), magnetic valves, inductive sensors (LVDT, RVDT, and Proximity), Hall Effect sensors, Magneto-resistive sensors, Magnetostrictive sensors and actuators.

UNIT V Chemical and Radiation Sensors

9H

Chemical Sensors: Principle and working of Electro-chemical, Thermo-chemical, Gas, pH, Humidity and moisture sensors.

Radiation Sensors: Principle and working of Ionization detectors, Scintillation detectors, Semiconductor radiation detectors and Microwave sensors (resonant, reflection, transmission)

Textbooks:

- 1. Sensors and Actuators Clarence W. de Silva, CRC Press, 2nd Edition, 2015
- 2. Sensors and Actuators, D.A.Hall and C.E.Millar, CRC Press, 1999

Reference Books:

- 1. Sensors and Transducers- D.Patranabhis, Prentice Hall of India (Pvt) Ltd. 2003
- 2. Measurement, Instrumentation, and Sensors Handbook-John G.Webster, CRC press 1999
- 3. Sensors A Comprehensive Sensors- Henry Bolte, John Wiley.
- 4. Handbook of modern sensors, Springer, Stefan Johann Rupitsch.

NPTEL course link: https://onlinecourses.nptel.ac.in/noc21_ee32/preview

	Course Outcomes	Blooms Level
CO1	Classify different types of Sensors and Actuators along with their characteristics	L1,L2
CO2	Summarize various types of Temperature and Mechanical sensors	L1,L2
CO3	Illustrates various types of optical and mechanical sensors	L1,L2
CO4	Analyze various types of Optical and Acoustic Sensors	L1,L2, L3
CO5	Interpret the importance of smart materials in various devices	L1,L2

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1							
CO2	3	3	2	1	1							
CO3	3	3	1	1	1							
CO4	3	2	1	1	-							
CO5	3	3	1	1	-							

1-Slightly, 2-Moderately, 3-Substantially.

IV B.Tech I Sem

	CHEMISTRY OF NANOMATERIALS AND	L	T	P	С
23A51702	APPLICATIONS	3	0	0	3
	(Open Elective-IV)				
	(Common to all branches)				

	Course Objectives
1	To understand basics and characterization of nanomaterials.
2	To understand synthetic methods of nanomatrials.
3	To apply various techniques for charterization of nanomaterials.
4	To understand Studies of Nano-structured Materials
5	To enumerate the applications of advanced nanomaterials in engineering

Course O	itcomes
CO1	Classify the nanostructure materials; describe scope of nanoscience and importance technology.
CO2	Describe the top-down approach, Explain aerosol synthesis and plasma arc technique, Differentiate chemical vapor deposition method and electrode position method, Discuss about highenergy ball milling.
CO3	Discuss different technique for characterization of nanomaterial, Explain electron microscopy techniques for characterization of nanomaterial, Describe BET method for surface area analysis.
CO4	Explain synthesis and properties and applications of nanaomaterials, Discuss about fullerenes and carbon nanotubes, Differentiate nanomagnetic materials and thermoelectric materials, nonlinear optical materials.
CO5	Illustrate advance engineering applications of Water treatment, sensors, electronic devices, medical domain, civil engineering, chemical engineering, metallurgy and mechanical engineering, food science, agriculture, pollutants degradation.

Mapping between Course Outcomes and Programme Outcomes

	PO1	PO2	РО3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5							·					

Unit – I

Basics and Characterization of Nanomaterials: Introduction, Scope of nanoscience and nanotecnology, nanoscience in nature, classification of nanostructured materials, importance of nanomaterials.

Unit-II

Synthesis of nanomaterials :Top-Down approach, Inert gas condensation, arc discharge method, aerosol synthesis, plasma arc technique, ion sputtering, laser ablation, laser pyrolysis, and chemical vapour deposition method, electrodeposition method, highenergy ball milling method.

Synthetic Methods: Bottom-Up approach, Sol-gel synthesis, microemulsions or reverse micelles, co-precipitation method, solvothermal synthesis, hydrothermal synthesis, microwave heating synthesis and sonochemical synthesis.

UNIT-III

Techniques for characterization: Diffraction technique, spectroscopy techniques, electron microscopy techniques for the characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for particle size determination.

UNIT-IV

Studies of Nano-structured Materials: Synthesis, properties and applications of the following nanomaterials -fullerenes, carbon nanotubes, 2D-nanomaterial (Graphene), core-shell, magnetic nanoparticles, thermoelectric materials, non-linear optical materials.

UNIT-V

Advanced Engineering Applications of Nanomaterials: Applications of Nano Particle, nanorods, nano wires, Water treatment, sensors, electronic devices, medical domain, civil engineering, chemical engineering, metallurgy and mechanical engineering, food science, agriculture, pollutants degradation.

TEXT BOOKS:

- **1. NANO: The Essentials:** T Pradeep, MaGraw-Hill, 2007.
- **2. Textbook of Nanoscience and nanotechnology:** B S Murty, P Shankar, BaldevRai, BB Rath and James Murday, Univ. Press, 2012.

REFERENCE BOOKS:

- **1.** Concepts of Nanochemistry; LudovicoCademrtiri and Geoffrey A. Ozin& Geoffrey A. Ozin, Wiley-VCH, 2011.
- **2. Nanostructures &Nanomaterials; Synthesis, Properties & Applications:** Guozhong Cao, Imperial College Press, 2007.

Nanomaterials

IV B.Tech I Sem

	LITERARY VIBES]
23A52704	(Open Elective-IV)	L	T	P	C	
	(Common to all branches)					

	Course Objectives					
1	To inculcate passion for aesthetic sense and reading skills					
2	To encourage respecting others' experiences and creative writing					
3	To explore emotions, communication skills and critical thinking					
4	To educate how books serve as the reflection of history and society					
5	To provide practical wisdom and duty of responding to events of the times					

	Course Outcomes	Blooms Level
CO1	Identify genres, literary techniques and creative uses of language in literary texts.	L1, L2
CO2	Explain the relevance of themes found in literary texts to contemporary, personal and cultural values and to historical forces	L1, L2
CO3	Apply knowledge and understanding of literary texts when responding to others' problems and their own and make evidence-based arguments	L3
CO4	Analyze the underlying meanings of the text by using the elements of literary texts	L4
CO5	Evaluate their own work and that of others critically	L5
CO6	Develop as creative, effective, independent and reflective students who are able to make informed choices in process and performance	L3

UNIT I: Poetry

- 1. Ulysses- Alfred Lord Tennyson
- 2. Ain't I woman?-Sojourner Truth
- 3. The Second Coming-W.B. Yeats
- 4. Where the Mind is Without Fear-Rabindranath Tagore

UNIT II: Drama: Twelfth Night- William Shakespeare

- 1. Shakespeare -life and works
- 1. Plot & sub-plot and Historical background of the play
- 2. Themes and Criticism
- 3. Style and literary elements
- 4. Characters and characterization

UNIT III: Short Story

- 1. The Luncheon Somerset Maugham
- 2. The Happy Prince-Oscar Wild
- 3. Three Questions Leo Tolstoy
- 4. Grief –Antony Chekov

UNIT IV: Prose: Essay and Autobiography

- 1. My struggle for an Education-Booker T Washington
- 2. The Essentials of Education-Richard Livingston
- 3. The story of My Life-Helen Keller

4. Student Mobs-JB Priestly

UNIT V: Novel: Hard Times- Charles Dickens

- 1. Charles Dickens-Life and works
- 2. Plot and Historical background of the novel
- 3. Themes and criticism
- 4. Style and literary elements
- 5. Characters and characterization

Text Books:

- 1. Charles Dickens. Hard Times. (Sangam Abridged Texts) Vantage Press, 1983
- 2. DENT JC. William Shakespeare. Twelfth Night. Oxford University Press, 2016.

References:

- 1. WJ Long. *History of English Literature*, Rupa Publications India; First Edition (4 October 2015)
- 2. RK Kaushik And SC Bhatia. *Essays, Short Stories and One Act Plays*, Oxford University Press .2018.
- 3. Dhanvel, SP. English and Soft Skills, Orient Blackswan, 2017.
- 4. New Horizon, Pearson publications, New Delhi 2014
- 5. Vimala Ramarao, Explorations Volume-II, Prasaranga Bangalore University, 2014.
- 6. Dev Neira, Anjana & Co. Creative Writing: A Beginner's Manual. Pearson India, 2008.

Online Resources

https://www.litcharts.com/poetry/alfred-lord-tennyson/ulysses

https://www.litcharts.com/lit/ain-t-i-a-woman/summary-and-analysis

https://englishliterature.education/articles/poetry-analysis/the-second-coming-by-w-b-yeats-

critical-analysis-summary-and-line-by-line-explanation/#google_vignette

https://sirjitutorials.com/where-the-mind-is-without-fear-poem-notes-explanation/

https://www.litcharts.com/lit/twelfth-night/themes

https://smartenglishnotes.com/2021/11/28/the-luncheon-summary-characters-themes-and-irony/

HONOURS

		L	T	P	C
23A33H01	ADVANCED ALGORITHMS FOR AI & ML	3	0	0	3

Course Objective:

- To deepen understanding of algorithmic principles for designing scalable and efficient AI/ML solutions
- To explore advanced topics such as optimization algorithms, randomized and approximation algorithms, and online learning.
- To analyze computational complexity, tractability, and convergence of AI models.
- To apply graph-based, evolutionary, and heuristic approaches in solving real-world AI/ML problems.
- To integrate algorithmic strategies for large-scale machine learning, reinforcement learning, and neural network training.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Analyze and apply classical algorithmic techniques including divide and conquer, dynamic programming, approximation, and randomized algorithms in the context of AI/ML.
- 2. Implement advanced graph algorithms for shortest paths, flows, and community detection, and apply them to AI problems like NLP and recommender systems.
- 3. Apply convex and non-convex optimization strategies, gradient-based learning, and regularization techniques to train and tune AI/ML models effectively.
- 4. Use evolutionary, swarm intelligence, and reinforcement learning-based metaheuristic methods for neural architecture search and complex optimization tasks in AI.
- 5. Evaluate and design scalable algorithmic solutions with fairness and interpretability for AI/ML applications, referencing case studies like AlphaGo, GPT, and AutoML systems.

UNIT I: Foundations of Advanced Algorithmic Techniques

Review of Time and Space Complexity, Divide and Conquer, Dynamic Programming, and Greedy Algorithms, Recurrence Relations and Master Theorem, Approximation Algorithms: Vertex Cover, TSP, Set Cover, Randomized Algorithms: Monte Carlo and Las Vegas Types, Probabilistic Analysis and Tail Bounds, Applications in ML Preprocessing and Feature Selection

UNIT II: Graph Algorithms and AI Applications

Graph Representations and Traversal Algorithms, Shortest Path: Dijkstra's, Bellman-Ford, Floyd-Warshall, Minimum Spanning Trees: Kruskal and Prim, Network Flows and Max Flow-Min Cut Theorem, Graph-Based Semi-Supervised Learning, PageRank, Centrality, and Community Detection, Applications in NLP, Vision, and Recommender Systems

UNIT III: Optimization in AI/ML

Convex and Non-Convex Optimization, Gradient Descent Variants: SGD, Momentum, Adam, Convergence Analysis and Learning Rates, Duality and Lagrange Multipliers, Regularization: L1, L2,

ElasticNet, Hyperparameter Optimization: Grid, Random, Bayesian, Constrained Optimization in SVMs and Deep Learning

UNIT IV: Evolutionary & Metaheuristic Algorithms

Genetic Algorithms and Evolutionary Strategies, Swarm Intelligence: PSO, Ant Colony Optimization, Simulated Annealing and Tabu Search, Multi-objective Optimization, Reinforcement Learning and Policy Gradient Methods, Neuroevolution: Evolving Neural Networks, Use Cases in Feature Engineering and Neural Architecture Search (NAS)

UNIT V: Advanced Topics and Case Studies

Online Learning and Regret Minimization, Bandit Algorithms: Multi-Armed Bandits, Thompson Sampling, Large-Scale Algorithms: MapReduce, Apache Spark MLlib, Algorithmic Fairness, Interpretability, and Ethics in AI, Case Studies: AlphaGo, GPT, BERT, Recommendation Engines, Research Trends in Algorithmic ML and AutoML, Capstone Problem Solving using Hybrid Algorithms

Text Books:

- 1. Introduction to Algorithms Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein (MIT Press)
- 2. Algorithms for Machine Learning Giuseppe Bonaccorso, Packt Publishing
- 3. Convex Optimization Stephen Boyd and Lieven Vandenberghe, Cambridge University Press
- 4. Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto

Reference Books:

- 1. Machine Learning: A Probabilistic Perspective Kevin P. Murphy
- 2. The Elements of Statistical Learning Trevor Hastie, Robert Tibshirani, Jerome Friedman
- 3. Evolutionary Computation Kenneth A. De Jong
- 4. Handbook of Approximation Algorithms and Metaheuristics Teofilo F. Gonzalez

Online Courses:

- 1. Coursera Advanced Algorithms and Complexity (UC San Diego)
- 2. edX Algorithmic Design and Techniques (UC San Diego)
- 3. MIT OpenCourseWare Advanced Algorithms
- 4. Udemy Optimization Algorithms in Machine Learning
- 5. Stanford Online Convex Optimization

23A33H02	DEED I EADNING & MELIDAL NETWORK ADOLLITECTURES	L	T	P	С
23A331102	DEEP LEARNING & NEURAL NETWORK ARCHITECTURES	3	0	0	3

Course Objectives:

- To introduce the fundamental concepts and mathematical foundations of deep learning.
- To explore different neural network architectures including CNNs, RNNs, LSTMs, and Transformers.
- To enable students to implement, train, and optimize deep neural networks.
- To analyze the performance and limitations of various architectures in different AI tasks.
- To develop the ability to apply deep learning models to real-world applications such as image recognition, language modeling, and autonomous systems.

Course Outcomes (COs):

Upon successful completion of this course, the student will be able to:

- CO1: Understand the theoretical foundations of neural networks and deep learning.
- CO2: Implement and train multilayer perceptrons, CNNs, RNNs, and other architectures.
- CO3: Analyze and optimize deep learning models using advanced regularization and tuning techniques.
- CO4: Evaluate the applicability of different neural network architectures for various AI problems.
- CO5: Apply state-of-the-art models such as Transformers and GANs in real-world domains.

UNIT I: Foundations of Neural Networks

Introduction to Artificial Neural Networks, Biological Neuron vs. Artificial Neuron, Perceptron, Multilayer Perceptron (MLP), Activation Functions: ReLU, Sigmoid, Tanh, Softmax, Backpropagation and Gradient Descent, Loss Functions: MSE, Cross Entropy, Overfitting, Regularization (L1/L2), Dropout

UNIT II: Convolutional Neural Networks (CNNs)

Convolution Operation and Feature Maps, Pooling Layers: Max and Average Pooling, CNN Architectures: LeNet, AlexNet, VGG, ResNet, Transfer Learning and Fine-tuning, Image Classification, Object Detection Basics, Implementation with TensorFlow/PyTorch

UNIT III: Recurrent Neural Networks (RNNs) and Variants

Sequential Data and Time Series, RNN Basics and Backpropagation Through Time (BPTT), Vanishing and Exploding Gradients, LSTM and GRU Architectures, Applications in Text, Speech, and Music, Sequence-to-Sequence Models

UNIT IV: Advanced Architectures & Optimization

Autoencoders and Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Deep Reinforcement Learning Overview, Batch Normalization, Early Stopping, Hyperparameter Tuning and Optimization, Performance Metrics and Evaluation

UNIT V: Transformer Models & Applications

Attention Mechanism and Self-Attention, Transformers and BERT Architecture, Positional Encoding, Multi-head Attention, Pre-trained Language Models and Fine-Tuning, Applications in NLP: Text Classification, Translation, Large Language Models and Transfer Learning

Text Books:

- 1. Deep Learning Ian Goodfellow, Yoshua Bengio, and Aaron Courville (MIT Press)
- 2. Neural Networks and Deep Learning Michael Nielsen (Online Book)
- 3. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow Aurélien Géron (O'Reilly)

Reference Books:

- 1. Pattern Recognition and Machine Learning Christopher M. Bishop
- 2. Deep Learning for Computer Vision Rajalingappaa Shanmugamani
- 3. Natural Language Processing with Transformers Lewis Tunstall, Leandro von Werra, Thomas Wolf
- 4. Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto

Recommended Online Courses:

- 1. Deep Learning Specialization Andrew Ng (Coursera)
- 2. CS231n: Convolutional Neural Networks for Visual Recognition (Stanford)
- 3. Fast.ai Practical Deep Learning for Coders
- 4. Deep Learning with PyTorch (Udacity)
- 5. Transformers by Hugging Face (free course)

23A33H03	REINFORCEMENT LEARNING & DECISION MAKING	L	T	P	C
23A331103		3	0	0	3

Course Objectives:

- To introduce the fundamentals of reinforcement learning (RL) and its mathematical foundation.
- To understand the Markov Decision Process (MDP) framework for decision making under uncertainty.
- To explore various RL algorithms including value-based, policy-based, and model-based approaches.
- To analyze deep reinforcement learning techniques for real-world applications.
- To study the integration of reinforcement learning with planning, exploration, and control strategies.

Course Outcomes (COs):

After successful completion of this course, students will be able to:

- 1. Understand the fundamentals of reinforcement learning, including agent-environment interaction, types of RL, and solving decision-making problems using Markov Decision Processes and Bellman equations.
- 2. Apply dynamic programming and Monte Carlo methods to perform policy evaluation, policy improvement, and control in model-based RL settings.
- 3. Implement temporal-difference learning algorithms like TD(0), Sarsa, and Q-learning, and extend them using eligibility traces and function approximation techniques.
- 4. Develop and analyze policy gradient and actor-critic methods, including REINFORCE and PPO, to optimize policies in continuous and high-dimensional action spaces.
- 5. Employ deep reinforcement learning techniques (DQN, DDPG, A3C, SAC) and exploration strategies to solve complex tasks in robotics, games, and autonomous systems, considering safety and ethical decision-making.

UNIT I: Introduction to Reinforcement Learning & MDPs

Foundations of RL: Agent-Environment Interaction, Types of RL: Model-based vs. Model-free, Reward Signals, Return, and Discounting, Markov Decision Processes (MDPs), Bellman Equations and Optimality

UNIT II: Dynamic Programming & Monte Carlo Methods

Policy Evaluation and Policy Improvement, Value Iteration and Policy Iteration, Monte Carlo Prediction and Control, First-visit and Every-visit Methods, Limitations of DP and MC Approaches

UNIT III: Temporal-Difference Learning & Function Approximation

TD(0), Sarsa, and Q-Learning Algorithms, Eligibility Traces: TD(λ), Sarsa(λ), Off-policy vs. On-policy Learning, Linear Function Approximation, Generalization in RL

UNIT IV: Policy Gradient Methods and Actor-Critic Algorithms

Policy Gradient Theorem, REINFORCE Algorithm, Baselines and Variance Reduction, Actor-Critic Architectures, Trust Region and Proximal Policy Optimization (PPO)

UNIT V: Deep Reinforcement Learning and Applications

Deep Q-Networks (DQN) and Experience Replay, DDPG, A3C, and SAC Algorithms, Exploration Techniques: ε-greedy, UCB, Intrinsic Rewards, RL in Robotics, Game AI, and Autonomous Systems, Safety, Ethics, and Fairness in Decision Making

Textbooks:

- 1. **Richard S. Sutton and Andrew G. Barto** *Reinforcement Learning: An Introduction*, 2nd Edition, MIT Press
- 2. **Ian Goodfellow, Yoshua Bengio, Aaron Courville** Deep Learning, MIT Press

Reference Books:

- 1. David Silver's RL Course Slides & Lectures DeepMind, University College London
- 2. **Marco Wiering & Martijn van Otterlo (Eds.)** *Reinforcement Learning: State of the Art*, Springer
- 3. **Csaba Szepesvári** Algorithms for Reinforcement Learning, Morgan & Claypool
- 4. **Yuxi Li** Deep Reinforcement Learning: An Overview, arXiv survey

Online Courses & Resources:

- 1. DeepMind x UCL Reinforcement Learning Lectures by David Silver
- 2. Coursera: Reinforcement Learning Specialization University of Alberta

23A33H04	AI FOR ROBOTICS & AUTOMATION	L	T	P	C
23A33H04	AI FOR ROBUTICS & AUTOMATION	3	0	0	3

Course Objectives:

- To introduce the principles of software engineering augmented with artificial intelligence.
- To explore AI-driven tools for software requirement analysis, design, testing, and maintenance.
- To understand DevOps practices and integrate AI techniques for CI/CD, deployment, and monitoring.
- To automate software lifecycle management using machine learning and data-driven insights.
- To develop intelligent pipelines for software delivery with adaptive testing and feedback systems.

Course Outcomes (COs):

By the end of the course, students will be able to:

- CO1: Describe the role of AI in modern software engineering processes and lifecycle stages.
- CO2: Apply AI/ML models for requirements gathering, code generation, defect prediction, and testing.
- CO3: Implement intelligent DevOps practices including CI/CD, release automation, and anomaly detection.
- CO4: Analyze data from software pipelines to drive informed decisions and improve quality.
- CO5: Develop an end-to-end AI-enabled software delivery pipeline with automated learning-based optimizations.

UNIT I: Foundations of AI-Driven Software Engineering

Introduction to Software Engineering Lifecycle, Traditional vs. AI-Driven Software Development, AI/ML in Software Engineering: Overview and Scope, Natural Language Processing (NLP) for Requirements Engineering, AI for Software Design Recommendation, Intelligent Code Completion (e.g., GitHub Copilot)

UNIT II: AI in Testing and Defect Prediction

Static and Dynamic Testing with AI, Automated Test Case Generation, Defect Detection and Prediction using ML Models, Sentiment and Bug Report Analysis, AI in Refactoring and Code Review, Tools: SonarQube, DeepCode

UNIT III: DevOps Principles and Practices

DevOps Overview: CI/CD Pipelines, Infrastructure as Code (IaC), Configuration Management Tools: Ansible, Puppet, Monitoring and Logging Tools: Prometheus, Grafana, Containerization and Orchestration: Docker, Kubernetes, Agile and Lean Practices in DevOps

UNIT IV: AI for DevOps Automation and Intelligence

Predictive Analytics for Deployment Success, AI for Log Analytics and Root Cause Analysis, Self-Healing Systems and Auto-Scaling, Feedback Loops in DevOps using Reinforcement Learning, Data-Driven Decision Making in Release Management, ChatOps and AIOps Platforms

UNIT V: Case Studies and Emerging Trends

Case Study: AI-Augmented DevOps in Enterprises, ML-Ops vs. DevOps vs. DataOps, Security in DevOps (DevSecOps), Explainability and Ethics in AI-Driven Software Engineering, Generative AI in Software Development, Future Trends and Industry Standards

Textbooks:

- 1. Tim Menzies, Diomidis Spinellis Artificial Intelligence and Software Engineering: Status and Future Directions
- 2. Len Bass, Ingo Weber, Liming Zhu DevOps: A Software Architect's Perspective, Addison-Wesley
- 3. Thomas Erl, Ricardo Puttini, Zaigham Mahmood AI & Analytics for DevOps, Pearson

Reference Books:

- 1. Carlos Nunes Silva AI in Software Engineering
- 2. Gene Kim, Jez Humble, Patrick Debois, John Willis The DevOps Handbook
- 3. Andrew Ng Machine Learning B.Techning (AI Systems Engineering Perspective)

Online Resources & Courses:

- 1. Coursera AI for Software Engineering (IBM)
- 2. DevOps with Microsoft Azure edX
- 3. Udacity AI for DevOps Engineers Nanodegree

23A33H05	AI ETHICS, FAIRNESS & EXPLAINABILITY	L T P C 3 0 0 3		
23A331103	AI ETHICS, FAIRNESS & EAPLAINABILITY	3	0 0 3	3

Course Objectives:

- To understand ethical concerns and responsibilities in the development and deployment of AI systems.
- To study fairness, bias, and accountability issues in AI and machine learning models.
- To explore techniques and frameworks for interpreting and explaining AI decisions.
- To analyze societal impacts of AI and build trust through transparent systems.
- To promote responsible and inclusive AI development aligned with human values.

Course Outcomes (COs):

After successful completion of the course, students will be able to:

- 1. Describe the ethical principles, historical context, and responsibilities associated with AI deployment across domains like healthcare and law enforcement.
- 2. Identify different forms of bias in datasets and algorithms, and apply fairness metrics and mitigation strategies to ensure equitable AI systems.
- 3. Demonstrate the need for explainability in AI models and utilize tools such as LIME, SHAP, and Grad-CAM to generate local and global model explanations.
- 4. Design AI systems with accountability by integrating human oversight, ethical documentation (e.g., Model Cards, Datasheets), and adherence to global guidelines.
- 5. Critically assess the broader societal and legal implications of AI in areas such as surveillance, misinformation, and inclusivity, and explore international policy frameworks.

UNIT I: Foundations of AI Ethics

Historical background of AI ethics, Core principles: beneficence, non-maleficence, autonomy, justice, Moral and legal responsibilities in AI systems, Risk assessment and governance in AI, Ethical AI case studies from healthcare, policing, hiring

UNIT II: Fairness and Bias in AI

Types of bias: dataset bias, label bias, historical bias, Fairness definitions: demographic parity, equal opportunity, individual fairness, Disparate impact and fairness metrics, Algorithmic audits and bias detection, Fairness-aware learning and mitigation strategies

UNIT III: Explainable Artificial Intelligence (XAI)

Need for interpretability in AI models, Taxonomy of XAI methods: model-agnostic, model-specific, LIME, SHAP, Grad-CAM, Partial Dependence Plots, Local vs Global explanations, Trade-offs: accuracy vs interpretability

UNIT IV: Accountability and Responsible AI Design

Transparent AI systems, Human-in-the-loop and AI-assisted decision-making, Accountability frameworks (e.g., IEEE, NIST, EU Guidelines), Documentation tools: Datasheets for datasets, Model Cards, Responsible AI lifecycle management

UNIT V: Societal Impacts and Policy Considerations

AI in surveillance, misinformation, and social manipulation, Ethical implications in autonomous systems (vehicles, weapons), AI and inclusion: accessibility, gender, race, socioeconomic impacts, Public policy, legal frameworks, and global initiatives, Future challenges and global governance of AI

Textbooks:

- 1. **Virginia Dignum** Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way, Springer
- 2. Cathy O'Neil Weapons of Math Destruction, Crown Publishing
- 3. **Mark Coeckelbergh** *AI Ethics*, The MIT Press

Reference Books:

- 1. **Nick Bostrom & Eliezer Yudkowsky** *The Ethics of Artificial Intelligence*
- 2. **Shalini Kantayya (Film)** *Coded Bias* (documentary, 2020)
- 3. **Floridi, Luciano** *Ethics of Information*, Oxford University Press

Online Courses & Resources:

- 1. Coursera AI For Everyone (Andrew Ng)
- 2. edX Ethics of AI and Big Data (Linux Foundation)

23A33H06	AI & MACHINE LEARNING LAB	L	T	P	С
23A331100		0	0	3	1.5

Course Objectives

- 1. To provide hands-on experience in implementing AI and machine learning algorithms.
- 2. To develop and evaluate models using real-world datasets.
- 3. To introduce optimization and hyperparameter tuning techniques.
- 4. To build intelligent systems for classification, prediction, and clustering.

Course Outcomes (CO)

After completing this lab, students will be able to:

- **CO1**: Implement key machine learning algorithms from scratch and using libraries.
- CO2: Preprocess data and select suitable features for modeling.
- **CO3**: Train, test, and evaluate models for accuracy and performance.
- CO4: Apply AI techniques to solve classification, regression, and decision-making problems.
- **CO5**: Develop simple AI agents and use neural networks for predictive tasks.

Tools Required

- Python (NumPy, Pandas, Scikit-learn, TensorFlow/Keras, OpenCV)
- Jupyter Notebook / Google Colab
- Datasets from UCI, Kaggle, Scikit-learn
- Anaconda / VS Code

List of 12 Experiments

- 1. **Data Preprocessing** Cleaning, normalization, encoding, and splitting data.
- 2. **Linear Regression** Implement simple and multiple linear regression.
- 3. **Logistic Regression** Binary classification on datasets like breast cancer or Titanic.
- 4. **K-Nearest Neighbors (KNN)** Classification task with evaluation metrics.
- 5. **Decision Trees and Random Forests** Tree-based classification and visualization.
- 6. **Support Vector Machines (SVM)** Margin classification with kernel trick.
- 7. **Naive Bayes** Text classification with spam dataset.
- 8. **K-Means Clustering** Unsupervised clustering with customer segmentation.
- 9. **Principal Component Analysis (PCA)** Dimensionality reduction and visualization.
- 10. **Artificial Neural Networks (ANNs)** Implement basic neural network using Keras.
- 11. **Model Evaluation & Tuning** Use cross-validation, GridSearchCV, and confusion matrices.
- 12. **AI Agent Search Algorithms** Implement A*, DFS, BFS for pathfinding problems.

23 A 23H07	ROBOTICS & AUTONOMOUS SYSTEMS LAB	L	T	P	С
23A33H07	ROBOTICS & AUTONOMOUS STSTEMS LAD	0	0	3	1.5

Course Objectives:

- To provide hands-on experience in deploying machine learning models into production environments.
- To introduce the tools and practices of MLOps for automating ML workflows.
- To train students in containerization, orchestration, monitoring, and CI/CD pipelines.
- To understand model versioning, reproducibility, and lifecycle management.
- To develop skills in using cloud platforms and APIs for scalable AI applications.

Course Outcomes:

By the end of this course, students will be able to:

- Package and deploy AI models using tools such as Flask, FastAPI, and Docker.
- Automate machine learning workflows using CI/CD pipelines and MLOps tools.
- Monitor and manage deployed models in real-time environments.
- Apply version control and model registry techniques effectively.
- Deploy models on cloud platforms like AWS, Azure, or GCP and use MLflow, Kubeflow, etc.

List of 12 Lab Experiments:

- 1. Experiment 1: Build a simple ML model and serve it via Flask or FastAPI.
- 2. Experiment 2: Containerize the model application using Docker.
- 3. Experiment 3: Deploy a Dockerized model on a local or cloud-based Kubernetes cluster.
- 4. Experiment 4: Implement CI/CD pipeline using GitHub Actions or GitLab CI.
- 5. Experiment 5: Track experiments and manage model versions using MLflow.
- 6. Experiment 6: Use DVC (Data Version Control) for tracking data and pipeline stages.
- 7. Experiment 7: Automate model retraining and deployment using Jenkins.
- 8. Experiment 8: Model monitoring using Prometheus and Grafana.
- 9. Experiment 9: Introduce model drift detection and retraining triggers.
- 10. Experiment 10: Deploy a model on a cloud platform (e.g., AWS SageMaker, GCP AI Platform).
- 11. Experiment 11: Use Kubeflow pipelines for end-to-end ML workflow management.
- 12. Experiment 12: Capstone: Full-cycle ML project from training to monitoring using MLOps best practices.

Textbooks:

- 1. Mark Treveil and Alok Shukla, AI and Analytics in Production: How to Implement Successful AI and Analytics Applications, O'Reilly Media.
- 2. Emmanuel Ameisen, Building Machine Learning Powered Applications, O'Reilly Media.

Reference Books:

- 1. Chris Fregly and Antje Barth, Data Science on AWS: Building End-to-End Applications, O'Reilly.
- 2. Alfredo Deza and Noah Gift, Practical MLOps, O'Reilly Media.
- 3. Soham Kamani, Learning MLOps, Packt Publishing.