Lab: Al & ML Lab (23A31403)

-..Andhra

Engineering College

9. Apply KNN algorithm for classification and regression

9a-Classifier).KNeighborsClassifier
9a-Regressor).KNeighborsRegressor

9b — Classifier).RadiusNeighborsClassifier
9b-Regressor).RadiusNeighborsRegressor

9a-Classifier).KNeighborsClassifier

Mathworks Here Metric May Changes Based on Problem Statement

2.2.1 Minkowski Distance

: ; : i be expressed a:
The Minkowski metric is a commonly used family of distance metrics which can p §

1
L r
d(p,q) = (Z(ka ‘”‘ri)) -
k=1

where r is a parameter that determines the type of metric being used and p and g are [-dimensional

vectors. Some variations based on selecting the value of r are:
i L norm: Here, r = o< and d(p,q) = mazimumy(|p(k) = Q(k)l)g' k e_{l‘ B .L}.. |
"Ly norm: In this case, r = 2 and d(p,q) = ():,E=l(|p(k) - q(k)l))* is the Euclidean distance.
this is the most popular variation. ' o
2 L, norm: In this case, r = 1 and d(p,) = (Efﬂ(lp(k) —q(k)|)) is the cnt?r-bloFk dmtalnu.
/ " Fractional norm: It is possible that is a fraction. In such a case, the resulting distance is called
fractional norm. It is not a metric as it violates the triangle inequality,

The importance of different norms will be examined while explaining the nearest neighbor classi-
fiers. It is important to ensure that all features used in the distance measure have the same range
of values, as attributes with larger ranges may gain undue advantage. Normalisation of feature
values can help to ensure that they are in the same range.

i, ERU R SRR B SR B PSP

Program:

import numpy as np
from matplotlib import pyplot as plt
from sklearn.neighbors import KNeighborsClassifier

xBlue = np.array([0.3,0.5,1,1.4,1.7,2])
yBlue = np.array([1,4.5,2.3,1.9,8.9,4.1])

xRed = np.array([3.3,3.5,4,4.4,5.7,6])
yRed = np.array([7,1.5,6.3,1.9,2.9,7.1])

X =
np.array([[0.3,1],[0.5,4.5],[1,2.3],[1.4,1.9],[1.7,8.9],[2,4.1],[3.3,7],[3.5,1.5],4,6.3],[4.4,1.9],[5.7,2.9],[6,7.

111)
y = np.array([0,0,0,0,0,0,1,1,1,1,1,1]) # O: blue class, 1: red class

plt.plot(xBlue, yBlue, 'ro', color = 'blue')
plt.plot(xRed, yRed, 'ro', color="red')
plt.plot(3,5,'ro',color="green’, markersize=15)
plt.axis([-0.5,10,-0.5,10])

classifier = KNeighborsClassifier(n_neighbors=3) # this is the k value
classifier.fit(X,y)

pred = classifier.predict(np.array([[5,5]]))
print(pred)

plt.show()

Output:

[1]

cmmp e e e = e

plt.plot(3,5, 'ro',color="green’, markersize=15)

10

10

9a-Regressor).KNeighborsRegressor
Mathworks

24 KNN REGRESSION "

It is possible to use KNN for regression also. So, in this case we are given a set___X of n 1a_bvllvd
examples, where

S

—

s sl el

H =1, .. o data vector and y, is a scalar. It is possible for y, also to bda vestex
ere Iy, 1 = 1,2,...,n18 i:"...___..-—-—---~——:""_" S AR LR A] The regression mode!l needs

in some applications. However, we restrict our attention to scalar y;s. Lhe regre ki

to use X tE find the value of y for a new vector I. In the case of regression based on KNN. we

perform the following: - {

L. Find the k nearest uuiglllalmi_Q,E_T_E‘EIDJE}IE!*."L‘.'E‘?.E‘ES' Let t.helln b;! ELA L AR

e — ; 1 X) . d
2. Consider the values associated with these x's. Let them be y',y*....,y

—_—
—

3 Take the average of these y's and declare this nvernge value to be the predicted value f

associnted with r 8o, the pradicted value of v, eall it j is,
i L8 UL L LA LE S

| y
p=s' +44 -+
k
We will illustrate it using the following example,

SXAMPLE 156: Consider the data shown in Table 2.10.

TABLE 2.10 Example data for KNN regression

Number Pattern Target

(1) (=) (v:)

1 (0.2,0.4) 8 —
2 (0.4,0.2) 8—
3 (0.6,0.4) 12
4 (0.8,0.6) 16

Program:

import numpy as np

from matplotlib import pyplot as plt

from sklearn.neighbors import KNeighborsRegressor

#
DATA (same points)
#
xBlue = np.array([0.3,0.5,1,1.4,1.7,2])

yBlue = np.array([1,4.5,2.3,1.9,8.9,4.1])

xRed = np.array([3.3,3.5,4,4.4,5.7,6])
yRed = np.array([7,1.5,6.3,1.9,2.9,7.1])

Feature matrix

X = np.array([
[0.3,1],[0.5,4.5],[1,2.3],[1.4,1.9],[1.7,8.9],[2,4.1],
[3.3,7],(3.5,1.5],[4,6.3],[4.4,1.9],[5.7,2.9],[6,7.1]

1)

#
TARGET VALUES (continuous)
#
Example: any numeric value (e.g., temperature, price, score)
y = np.array([10,12,11,13,15,14,20,18,22,19,21,23])

#
PLOTTING
#
plt.plot(xBlue, yBlue, 'ro', color="'blue')
plt.plot(xRed, yRed, 'ro', color="red')

Point to predict
plt.plot(5,5,'ro', color="green', markersize=15)
plt.axis([-0.5,10,-0.5,10])

#
KNN REGRESSOR
#
regressor = KNeighborsRegressor(n_neighbors=3)
regressor.fit(X, y)

Prediction
pred = regressor.predict(np.array([[5,5]]))
print("Predicted value:", pred)

plt.show()

Output :

10

L)

Predicted value: [22.]

10

9b - Classifier).RadiusNeighborsClassifier

Mathworks
2.3.4 Radius Distance Nearest Neighbor Algorithm =~

This algorithm is an alternative to the
specified distance 7 of the point of inter

1.

2.
3.
This algnrii.im-l‘_i;; useful for identifying tlllt.’l_i_o_::::':_n
the patterns within the chosen radius can be ide
radius r is critical as it can affect the perfc

KNN algorithm that considers all the neighbors _wi_t._l_li_l_l a
est. This algorithm can be described as follows:

Given a po;.'x_t T. identify the subset of data points that fall within the radius r centred at T,
denoted by e ‘
Br(T) = {zi € X s.t. |T - Xi|| <7}

If Br(T) is empty, output the majority class of the entire data set. ,

If Br(T) is not ‘,]'n[,t‘y","di|1.|mt the majority class of the data points within Br(T);

. e s any pattern that does not have similarity with
mtified as an outlier. The choice of the value of
wmance of the atgorithm.

—

Program:

import numpy as np

from matplotlib import pyplot as plt

from sklearn.neighbors import RadiusNeighborsClassifier

xBlue = np.array([0.3,0.5,1,1.4,1.7,2])
yBlue = np.array([1,4.5,2.3,1.9,8.9,4.1])

xRed = np.array([3.3,3.5,4,4.4,5.7,6])
yRed = np.array([7,1.5,6.3,1.9,2.9,7.1])

X =np.array([

1)

[0.3,1],[0.5,4.5],[1,2.3],[1.4,1.9],[1.7,8.9],[2,4.1],
[3.3,7],[3.5,1.5],[4,6.3],[4.4,1.9],[5.7,2.9],[6,7.1]

y = np.array([0,0,0,0,0,0,1,1,1,1,1,1]) # O: blue class, 1: red class

plt.plot(xBlue, yBlue, 'ro', color="'blue")
plt.plot(xRed, yRed, 'ro', color="red')
plt.plot(5,5,'ro', color="green', markersize=15)
plt.axis([-0.5,10,-0.5,10])

[Radius Neighbors Classifier
classifier = RadiusNeighborsClassifier(radius=2.5)
classifier.fit(X, y)

pred = classifier.predict(np.array([[5,5]]))
print(pred)

plt.show()
Output:

[1]

10

9b-Regressor).RadiusNeighborsRegressor

Program:

import numpy as np

from matplotlib import pyplot as plt

from sklearn.neighbors import RadiusNeighborsRegressor

xBlue = np.array([0.3,0.5,1,1.4,1.7,2])
yBlue = np.array([1,4.5,2.3,1.9,8.9,4.1])

xRed = np.array([3.3,3.5,4,4.4,5.7,6])
yRed = np.array([7,1.5,6.3,1.9,2.9,7.1])

X = np.array([
[0.3,1],[0.5,4.5],[1,2.3],[1.4,1.9],[1.7,8.9],[2,4.1],
[3.3,7],[3.5,1.5],[4,6.3],[4.4,1.9],[5.7,2.9],[6,7.1]

1)

[Continuous target values (for regression)
y =np.array([10,12,11,13,15,14,20,18,22,19,21,23])

plt.plot(xBlue, yBlue, 'ro', color="'blue')

10

plt.plot(xRed, yRed, 'ro', color="red')
plt.plot(5,5,'ro’, color='green’, markersize=15)
plt.axis([-0.5,10,-0.5,10])

[Radius Neighbors Regressor
regressor = RadiusNeighborsRegressor(radius=2.5)
regressor.fit(X, y)

pred = regressor.predict(np.array([[5,5]]))
print(pred)

plt.show()

Output:

ML LG 1O« CUPF LWL Ty 140l VELWST) LOI LU uiaans g

[22.]
10

6

10

