Lab: Al & ML Lab (23A31403)

College: An d h ra

Engineering College

8. Apply the following Pre-processing techniques for a given dataset.
a. Attribute selection

b. Handling Missing Values

c. Discretization

d. Elimination of Outliers

import pandas as pd
data ={
'roll_number'['501','503','509','518','520','524','538','544','510','511','517"','532'],

'Name':['HEMANTHKUMAR','MANEEL','PRAKASH','VENKATASUBBAIAH','JAYA','NANI','GOP!",’
MANOJ',' ANKESWARAMMA','DHARANI','PRAVEEN','PRAKASH'],

'Passed':[1,3,1,1,3,1,2,3,6,6,6,5],

'Failed':[5,3,5,5,3,5,4,3,0,0,0,1],

'Passed':[1,3,1,1,None,1,2,3,6,6,6,5],

'Failed':[None,3,5,5,3,None,4,3,0,0,0,1],

"Total":[6,6,6,6,6,6,6,6,6,6,6,6],

‘Branch":['AIML','AIML",'AIML",'AIML",'AIML",'AIML",'AIML",'AIML",'AIML",' AIML','AIML',' AIML']

'‘Age':[22,20,21,20,23,19,20,23,22,21,20,None]

}

df = pd.DataFrame(data)

print(df)

roll_number Name Passed Failed Total Branch Age
0 501 HEMANTHKUMAR 1.0 NaN 6 AIML 22.0
1 503 MANEEL 3.0 3.0 6 AIML 20.0

2 509 PRAKASH 1.0 5.0 6 AIML 21.0

3 518 VENKATASUBBAIAH 1.0 5.0 6 AIML 20.0
4 520 JAYA' NaN 3.0 6 AIML 23.0

5 524 NANI 1.0 NaN 6 AIML 19.0

6 538 GOPI 2.0 4.0 6 AIML 20.0

7 544 MANOJ 3.0 3.0 6 AIML 23.0

8 510 ANKESWARAMMA 6.0 0.0 6 AIML 22.0
9 511 DHARANI 6.0 0.0 6 AIML 21.0

[E
o

517 PRAVEEN 6.0 0.0 6 AIML 20.0

11

532

PRAKASH 5.0

1.0

6 AIML NaN

df1=df[['Age’,'Passed’,'Failed','Total','Age']]

dfl

Age

10

11

Passed

22.0

20.0

21.0

20.0

23.0

19.0

20.0

23.0

22.0

21.0

20.0

NaN

Failed Total
1.0 NaN
3.0 3.0
1.0 5.0
1.0 5.0
NaN 3.0
1.0 NaN
2.0 4.0
3.0 3.0
6.0 0.0
6.0 0.0
6.0 0.0
5.0 1.0

Age

Method 1: Remove missing rows

df=df.dropna()

df

22.0

20.0

21.0

20.0

23.0

19.0

20.0

23.0

22.0

21.0

20.0

NaN

df['Age'] fillna(df['Age'].mean(),inplace=True)

df['Passed'].fillna(df['Passed'].mean(),inplace=True)
df['Failed'].fillna(df['Failed'].mean(),inplace=True)

df['Age'].fillna(df['Age'].mode(), inplace=True)

df['Age'] fillna(df['Age'].mode()[0], inplace=True)
df['Age'] fillna(df['Age'].mean(), inplace=True)

df

roll_number
0

1

10

11

bins =[-0.1, 0, 2, 4, 6]

Name Passed

501

503

509

518

520

524

538

544

510

511

517

532

HEMANTHKUMAR

MANEEL

PRAKASH

VENKATASUBBAIAH

JAYA

NANI

GOPI

MANOJ

ANKESWARAMMA

DHARANI

PRAVEEN

PRAKASH

Failed

1.000000

3.000000

1.000000

1.000000

3.181818

1.000000

2.000000

3.000000

6.000000

6.000000

6.000000

5.000000

Total

2.4

3.0

5.0

5.0

3.0

2.4

4.0

3.0

0.0

0.0

0.0

1.0

labels = ['Excellent’, 'Good', 'Average', 'Poor Performance']
df['Failed_Group'] = pd.cut(df['Failed'], bins=bins, labels=labels,include_lowest=True)
print(df[['Failed’, 'Failed_Group']])

bins_age = [0, 18, 25, 35, 50, 100]

labels_age = ['Minor', 'Young Adult', 'Adult’, 'Senior', 'Very Senior']
df['Age_Group']=pd.cut(df['Age'], bins=bins_age, labels=labels_age)
df[['Age’, 'Age_Group']]

Branch Age

6 AIML
6 AIML
6 AIML
6 AIML
6 AIML
6 AIML
6 AIML
6 AIML
6 AIML
6 AIML
6 AIML
6 AIML

22.0

20.0

21.0

20.0

23.0

19.0

20.0

23.0

22.0

21.0

20.0

21.0

Age Age_Group

0 22.0 Young Adult
1 20.0 Young Adult
2 21.0 Young Adult
3 20.0 Young Adult
4 23.0 Young Adult
5 19.0 Young Adult
6 20.0 Young Adult
7 23.0 Young Adult
8 22.0 Young Adult
9 21.0 Young Adult
10 20.0 Young Adult
11 21.0 Young Adult

Min—Max Normalization (0 to 1) — Correct Method

Normalization

= Min-max normalization: to [new_min,, new_max,]

v'--- \"“mf.n{

mMax. — min.
« Ex. Let income range $12,000 to $98 GDG norrrlalnzed to [0.0,

1.0]. Then $73,000 is mapped to untm lzumnﬂ e 8714

« Z-score normalization (u: mean, o: standard deviation):

v': Vo— #d
O

(new _max.—new _min.)+new _min.

» Ex. Let p = 54,000, 0 = 16,000, Then ~200-34000_, ;)¢

= Normalization by decimal scaling

v'=—— Where is the smallest integer such that Max(jv'[) < 1

10/

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

df[['Age_mm’, 'Passed_mm', 'Failed_mm']] = scaler.fit_transform(
df[['Age’, 'Passed’, 'Failed']]

)

print(df[['Age’, 'Age_mm’, 'Passed’, 'Passed_mm','Failed’,'Failed_mm']])

Age Age_ mm Passed Passed _mm Failed Failed_mm
22.0 0.75 1.000000 0.000000 2.4 0.48
20.0 0.25 3.000000 0.400000 3.0 0.60
21.0 0.50 1.000000 0.000000 5.0 1.00
20.0 0.25 1.000000 0.000000 5.0 1.00
23.0 1.00 3.181818 0.436364 3.0 0.60
19.0 0.00 1.000000 0.000000 2.4 0.48
20.0 0.25 2.000000 0.200000 4.0 0.80
23.0 1.00 3.000000 0.400000 3.0 0.60
22.0 0.75 6.000000 1.000000 0.0 0.00
21.0 0.50 6.000000 1.000000 0.0 0.00
10 20.0 0.25 6.000000 1.000000 0.0 0.00
11 21.0 0.50 5.000000 0.800000 1.0 0.20

WCoONOTUD WNRO

52

Z-Score Normalization (Standardization)

Score

&l ‘zTan

_x o

1)
. sp

Z

...It & percent of babies can walk by 10 months

7= X-X

-1.645 ?

10 months

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

df[['Age_z', 'Passed_z', 'Failed_z']] = scaler.fit_transform(
df[['Age’, 'Passed’, 'Failed']]

)

print(df[['Age’, 'Age_z','Passed’,'Passed_z','Failed’, 'Failed_z']])

Output

Age Age_z Passed Passed_z Failed Failed_z

0 22.0 0.816497 1.000000-1.095065 2.4 0.000000
1 20.0-0.816497 3.000000-0.091255 3.0 0.344502
2 21.0 0.000000 1.000000-1.095065 5.0 1.492840

20.0-0.816497 1.000000 -1.095065 5.0 1.492840
23.0 1.632993 3.181818 0.000000 3.0 0.344502
19.0-1.632993 1.000000 -1.095065 2.4 0.000000
20.0-0.816497 2.000000-0.593160 4.0 0.918671
23.0 1.632993 3.000000-0.091255 3.0 0.344502
22.0 0.816497 6.000000 1.414459 0.0-1.378006
21.0 0.000000 6.000000 1.414459 0.0-1.378006
10 20.0-0.816497 6.000000 1.414459 0.0-1.378006
11 21.0 0.000000 5.000000 0.912554 1.0-0.803837

O oo ~NOYULL B W

