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8. Apply the following Pre-processing techniques for a given dataset.
a. Attribute selection

b. Handling Missing Values

c. Discretization

d. Elimination of Outliers

import pandas as pd
data ={
'roll_number'['501','503','509','518','520','524','538','544','510','511','517"','532'],

'Name':['HEMANTHKUMAR','MANEEL','PRAKASH','VENKATASUBBAIAH','JAYA','NANI','GOP!",’
MANOJ',' ANKESWARAMMA','DHARANI','PRAVEEN','PRAKASH'],

# 'Passed':[1,3,1,1,3,1,2,3,6,6,6,5],

# 'Failed':[5,3,5,5,3,5,4,3,0,0,0,1],

'Passed':[1,3,1,1,None,1,2,3,6,6,6,5],

'Failed':[None,3,5,5,3,None,4,3,0,0,0,1],

"Total":[6,6,6,6,6,6,6,6,6,6,6,6],

‘Branch":['AIML','AIML",'AIML",'AIML",'AIML",'AIML",'AIML",'AIML",'AIML",' AIML','AIML',' AIML']

'‘Age':[22,20,21,20,23,19,20,23,22,21,20,None]

}

df = pd.DataFrame(data)

print(df)

roll_number Name Passed Failed Total Branch Age
0 501 HEMANTHKUMAR 1.0 NaN 6 AIML 22.0
1 503 MANEEL 3.0 3.0 6 AIML 20.0

2 509 PRAKASH 1.0 5.0 6 AIML 21.0

3 518 VENKATASUBBAIAH 1.0 5.0 6 AIML 20.0
4 520 JAYA' NaN 3.0 6 AIML 23.0

5 524 NANI 1.0 NaN 6 AIML 19.0

6 538 GOPI 2.0 4.0 6 AIML 20.0

7 544 MANOJ 3.0 3.0 6 AIML 23.0

8 510 ANKESWARAMMA 6.0 0.0 6 AIML 22.0
9 511 DHARANI 6.0 0.0 6 AIML 21.0
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df1=df[['Age’,'Passed’,'Failed','Total','Age']]
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# Method 1: Remove missing rows

# df=df.dropna()
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df['Age'] fillna(df['Age'].mean(),inplace=True)

df['Passed'].fillna(df['Passed'].mean(),inplace=True)
df['Failed'].fillna(df['Failed'].mean(),inplace=True)

df['Age'].fillna(df['Age'].mode(), inplace=True)

# df['Age'] fillna(df['Age'].mode()[0], inplace=True)
# df['Age'] fillna(df['Age'].mean(), inplace=True)

df

roll_number
0
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# bins =[-0.1, 0, 2, 4, 6]
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# labels = ['Excellent’, 'Good', 'Average', 'Poor Performance']
# df['Failed_Group'] = pd.cut(df['Failed'], bins=bins, labels=labels,include_lowest=True)
# print(df[['Failed’, 'Failed_Group']])

bins_age = [0, 18, 25, 35, 50, 100]

labels_age = ['Minor', 'Young Adult', 'Adult’, 'Senior', 'Very Senior']
df['Age_Group']=pd.cut(df['Age'], bins=bins_age, labels=labels_age)
df[['Age’, 'Age_Group']]
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Age Age_Group

0 22.0 Young Adult
1 20.0 Young Adult
2 21.0 Young Adult
3 20.0 Young Adult
4 23.0 Young Adult
5 19.0 Young Adult
6 20.0 Young Adult
7 23.0 Young Adult
8 22.0 Young Adult
9 21.0 Young Adult
10 20.0 Young Adult
11  21.0 Young Adult

# Min—Max Normalization (0 to 1) — Correct Method



Normalization

= Min-max normalization: to [new_min,, new_max,]
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mMax. — min.
« Ex. Let income range $12,000 to $98 GDG norrrlalnzed to [0.0,

1.0]. Then $73,000 is mapped to untm lzumnﬂ e 8714

« Z-score normalization (u: mean, o: standard deviation):
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» Ex. Let p = 54,000, 0 = 16,000, Then ~200-34000_, ;)¢

= Normalization by decimal scaling

v'=—— Where is the smallest integer such that Max(jv'[) < 1
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from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

df[['Age_mm’, 'Passed_mm', 'Failed_mm']] = scaler.fit_transform(
df[['Age’, 'Passed’, 'Failed']]

)

print(df[['Age’, 'Age_mm’, 'Passed’, 'Passed_mm','Failed’,'Failed_mm']])

Age Age_ mm Passed Passed _mm Failed Failed_mm
22.0 0.75 1.000000 0.000000 2.4 0.48
20.0 0.25 3.000000 0.400000 3.0 0.60
21.0 0.50 1.000000 0.000000 5.0 1.00
20.0 0.25 1.000000 0.000000 5.0 1.00
23.0 1.00 3.181818 0.436364 3.0 0.60
19.0 0.00 1.000000 0.000000 2.4 0.48
20.0 0.25 2.000000 0.200000 4.0 0.80
23.0 1.00 3.000000 0.400000 3.0 0.60
22.0 0.75 6.000000 1.000000 0.0 0.00
21.0 0.50 6.000000 1.000000 0.0 0.00
10 20.0 0.25 6.000000 1.000000 0.0 0.00
11 21.0 0.50 5.000000 0.800000 1.0 0.20
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# Z-Score Normalization (Standardization)
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from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

df[['Age_z', 'Passed_z', 'Failed_z']] = scaler.fit_transform(
df[['Age’, 'Passed’, 'Failed']]

)

print(df[['Age’, 'Age_z','Passed’,'Passed_z','Failed’, 'Failed_z']])

Output

Age Age_z Passed Passed_z Failed Failed_z

0 22.0 0.816497 1.000000-1.095065 2.4 0.000000
1 20.0-0.816497 3.000000-0.091255 3.0 0.344502
2 21.0 0.000000 1.000000-1.095065 5.0 1.492840



20.0-0.816497 1.000000 -1.095065 5.0 1.492840
23.0 1.632993 3.181818 0.000000 3.0 0.344502
19.0-1.632993 1.000000 -1.095065 2.4 0.000000
20.0-0.816497 2.000000-0.593160 4.0 0.918671
23.0 1.632993 3.000000-0.091255 3.0 0.344502
22.0 0.816497 6.000000 1.414459 0.0-1.378006
21.0 0.000000 6.000000 1.414459 0.0-1.378006
10 20.0-0.816497 6.000000 1.414459 0.0-1.378006
11 21.0 0.000000 5.000000 0.912554 1.0-0.803837
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