
Lab: AI & ML Lab (23A31403)

College: Andhra

 Engineering College

8. Apply the following Pre-processing techniques for a given dataset.
a. AƩribute selecƟon
b. Handling Missing Values
c. DiscreƟzaƟon
d. EliminaƟon of Outliers

Program :

import pandas as pd
data = {
 'roll_number':['501','503','509','518','520','524','538','544','510','511','517','532'],

'Name':['HEMANTHKUMAR','MANEEL','PRAKASH','VENKATASUBBAIAH','JAYA','NANI','GOPI','
MANOJ','ANKESWARAMMA','DHARANI','PRAVEEN','PRAKASH'],
 # 'Passed':[1,3,1,1,3,1,2,3,6,6,6,5],
 # 'Failed':[5,3,5,5,3,5,4,3,0,0,0,1],
 'Passed':[1,3,1,1,None,1,2,3,6,6,6,5],
 'Failed':[None,3,5,5,3,None,4,3,0,0,0,1],
 'Total':[6,6,6,6,6,6,6,6,6,6,6,6],

'Branch':['AIML','AIML','AIML','AIML','AIML','AIML','AIML','AIML','AIML','AIML','AIML','AIML']
,
 'Age':[22,20,21,20,23,19,20,23,22,21,20,None]
}

df = pd.DataFrame(data)
print(df)

Output:
roll_number Name Passed Failed Total Branch Age
0 501 HEMANTHKUMAR 1.0 NaN 6 AIML 22.0
1 503 MANEEL 3.0 3.0 6 AIML 20.0
2 509 PRAKASH 1.0 5.0 6 AIML 21.0
3 518 VENKATASUBBAIAH 1.0 5.0 6 AIML 20.0
4 520 JAYA NaN 3.0 6 AIML 23.0
5 524 NANI 1.0 NaN 6 AIML 19.0
6 538 GOPI 2.0 4.0 6 AIML 20.0
7 544 MANOJ 3.0 3.0 6 AIML 23.0
8 510 ANKESWARAMMA 6.0 0.0 6 AIML 22.0
9 511 DHARANI 6.0 0.0 6 AIML 21.0
10 517 PRAVEEN 6.0 0.0 6 AIML 20.0

11 532 PRAKASH 5.0 1.0 6 AIML NaN

a. AƩribute selecƟon

Program:

df1=df[['Age','Passed','Failed','Total','Age']]
df1

Output

Age Passed Failed Total Age

0 22.0 1.0 NaN 6 22.0

1 20.0 3.0 3.0 6 20.0

2 21.0 1.0 5.0 6 21.0

3 20.0 1.0 5.0 6 20.0

4 23.0 NaN 3.0 6 23.0

5 19.0 1.0 NaN 6 19.0

6 20.0 2.0 4.0 6 20.0

7 23.0 3.0 3.0 6 23.0

8 22.0 6.0 0.0 6 22.0

9 21.0 6.0 0.0 6 21.0

10 20.0 6.0 0.0 6 20.0

11 NaN 5.0 1.0 6 NaN

b. Handling Missing Values

Method 1: Remove missing rows
df=df.dropna()
df

df['Age'].fillna(df['Age'].mean(),inplace=True)
df['Passed'].fillna(df['Passed'].mean(),inplace=True)
df['Failed'].fillna(df['Failed'].mean(),inplace=True)
df['Age'].fillna(df['Age'].mode(), inplace=True)
df['Age'].fillna(df['Age'].mode()[0], inplace=True)
df['Age'].fillna(df['Age'].mean(), inplace=True)
df
Output:

roll_number Name Passed Failed Total Branch Age

0 501 HEMANTHKUMAR 1.000000 2.4 6 AIML 22.0

1 503 MANEEL 3.000000 3.0 6 AIML 20.0

2 509 PRAKASH 1.000000 5.0 6 AIML 21.0

3 518 VENKATASUBBAIAH 1.000000 5.0 6 AIML 20.0

4 520 JAYA 3.181818 3.0 6 AIML 23.0

5 524 NANI 1.000000 2.4 6 AIML 19.0

6 538 GOPI 2.000000 4.0 6 AIML 20.0

7 544 MANOJ 3.000000 3.0 6 AIML 23.0

8 510 ANKESWARAMMA 6.000000 0.0 6 AIML 22.0

9 511 DHARANI 6.000000 0.0 6 AIML 21.0

10 517 PRAVEEN 6.000000 0.0 6 AIML 20.0

11 532 PRAKASH 5.000000 1.0 6 AIML 21.0

c. DiscreƟzaƟon

bins = [-0.1, 0, 2, 4, 6]
labels = ['Excellent', 'Good', 'Average', 'Poor Performance']
df['Failed_Group'] = pd.cut(df['Failed'], bins=bins, labels=labels,include_lowest=True)
print(df[['Failed', 'Failed_Group']])

bins_age = [0, 18, 25, 35, 50, 100]
labels_age = ['Minor', 'Young Adult', 'Adult', 'Senior', 'Very Senior']
df['Age_Group']=pd.cut(df['Age'], bins=bins_age, labels=labels_age)
df[['Age', 'Age_Group']]

Output:

Age Age_Group

0 22.0 Young Adult

1 20.0 Young Adult

2 21.0 Young Adult

3 20.0 Young Adult

4 23.0 Young Adult

5 19.0 Young Adult

6 20.0 Young Adult

7 23.0 Young Adult

8 22.0 Young Adult

9 21.0 Young Adult

10 20.0 Young Adult

11 21.0 Young Adult

d. EliminaƟon of Outliers

Min–Max NormalizaƟon (0 to 1) – Correct Method

Program

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[['Age_mm', 'Passed_mm', 'Failed_mm']] = scaler.fit_transform(
 df[['Age', 'Passed', 'Failed']]
)

print(df[['Age', 'Age_mm', 'Passed', 'Passed_mm','Failed','Failed_mm']])

Output:
Age Age_mm Passed Passed_mm Failed Failed_mm
0 22.0 0.75 1.000000 0.000000 2.4 0.48
1 20.0 0.25 3.000000 0.400000 3.0 0.60
2 21.0 0.50 1.000000 0.000000 5.0 1.00
3 20.0 0.25 1.000000 0.000000 5.0 1.00
4 23.0 1.00 3.181818 0.436364 3.0 0.60
5 19.0 0.00 1.000000 0.000000 2.4 0.48
6 20.0 0.25 2.000000 0.200000 4.0 0.80
7 23.0 1.00 3.000000 0.400000 3.0 0.60
8 22.0 0.75 6.000000 1.000000 0.0 0.00
9 21.0 0.50 6.000000 1.000000 0.0 0.00
10 20.0 0.25 6.000000 1.000000 0.0 0.00
11 21.0 0.50 5.000000 0.800000 1.0 0.20

Z-Score NormalizaƟon (StandardizaƟon)

Program

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df[['Age_z', 'Passed_z', 'Failed_z']] = scaler.fit_transform(
 df[['Age', 'Passed', 'Failed']]
)
print(df[['Age', 'Age_z','Passed','Passed_z','Failed', 'Failed_z']])

Output

Age Age_z Passed Passed_z Failed Failed_z
0 22.0 0.816497 1.000000 -1.095065 2.4 0.000000
1 20.0 -0.816497 3.000000 -0.091255 3.0 0.344502
2 21.0 0.000000 1.000000 -1.095065 5.0 1.492840

3 20.0 -0.816497 1.000000 -1.095065 5.0 1.492840
4 23.0 1.632993 3.181818 0.000000 3.0 0.344502
5 19.0 -1.632993 1.000000 -1.095065 2.4 0.000000
6 20.0 -0.816497 2.000000 -0.593160 4.0 0.918671
7 23.0 1.632993 3.000000 -0.091255 3.0 0.344502
8 22.0 0.816497 6.000000 1.414459 0.0 -1.378006
9 21.0 0.000000 6.000000 1.414459 0.0 -1.378006
10 20.0 -0.816497 6.000000 1.414459 0.0 -1.378006
11 21.0 0.000000 5.000000 0.912554 1.0 -0.803837

