CHAPTER 4

The Bayes Classifier

Learning Objectives
At the end of this chapter, you will be able to:

« Explain the Bayes classifier

« Describe probability, conditional probability and Bayes’ rule

. Define random variables, probability mass function, probability density function, cumulative
distribution function, expectation and variance

« Explain optimality of the Bayes classifier

« Describe parametric and non-parametric schemes for density estimation

« Define class conditional independance and the naive Bayes classifier

4.1 INTRODUCTION TO THE BAYES CLASSIFIE&/

The Bayes classifier is an optimal classifier. It operates based on the probability structure associated
with the domain of application. It employs Bayes’ rule to convert the a priori probability of a class
into posterior probability with the help of probability distributions associated with the class. These
posterior probabilities are used to classify the test patterns; the pattern is assigned to the class
that has the largest posterior probability. In case the probability structure is not readily available,
the training data is used to learn the probability structure.

Some of the important properties of Bayesian classifiers are as follows:

« It minimizes the probability of error associated with classification.

e It can deal with data that employs both categorical and numerical features.

« It is more of a benchmark classifier having sound theoretical properties. However, in most
practical applications, the underlying probability structure is not readily available.

«  Some additional constraints on the probability structure are applied to make estimation of the
probability structure simpler. For example, the naive Bayes classifier (NBC) is one that
assumes that features are independent of each other, given that the data points belong to a
class.

* Primarily, there are two schemes for estimating the probabilities associated. One of them
depends solely on the data; it is called the maximum likelihood estimate or the frequency-based
estimate. The other scheme is more general and it combines application domain knowledge with
the data in estimation; it is called the Bayesian estimation or Bayesian learning of the
probability structure.
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.2\"%ROBABILITY, CONDITIONAL PROBABILITY AND BAYgs®

\}3( ' RULE

Let us start with a simple scenario where domain knowledge i8 used in the form of prior probat,;
to classify patterns.

EXAMPLE 1: Let us assume that 10,000 people in a community had undergone the COV, |,
and 50 of them tested positive, while the remaining 9950 tested negative. In this two-cl; ..
class) problem, a simple frequency estimate will give us the following values for the proi,,;,
for the two classes:

50 9950

P(positive) = 10000 = 0.005 and P(negative) = ——— = 0.995

These probabilities are called prior probabilities as they are obtained using domair, .
edge.

Suppose a new person, from the community, who has not undergone the test. need- .
classified. In the absence of any other information from the person, one would try to use th:
probabilities in decision making; so the new person is assigned a COVID-19-negative label »
probability P(negative) is significantly larger than P(positive) (0.995 >> 0.005). So. invar

every other person in the community who has not undergone the test will be classified as ()" -

19-negative using this rule of classification, which is influenced by the larger prior probabil:
being COVID-19-negative.

Such a classification is erroneous if the new person is actually COVID-19-positive. Thi-
occur with a probability of 0.005 (P(positive)); so, the probability of error is 0.005. Note that «
person who is actually COVID-19-negative is correctly classified in this process.

. This is not new; in the KNN classifier, if the value of k = n, where n is the size of the tri
data set, and if we have k; (out of k) from the COVID-19-positive class and k- (k — k) frow
COVID-19-negative class, then the probability estimates are

P(positive) = % and P(negative) = %

It is not difficult to see that KNN gives the same result as classification based on prior probabil
One can ask whether we can do better if more information is available. In order to answt!
question, we need to refresh some basic probability concepts:

e In a random experiment, we have a sample space, S, that is, the set of all outcomes
example, tossing a coin gives us {H,T} as the sample space, where H stands for head i
stands for fail.

e Anevent is a subset of the sample space. We associate probabilities with events. If A is an ¢
then its probability P(A4) € [0,1], that is, probability is non-negative and is upper bot!
(less than or equal to) 1,

» If A and B are disjoint events (AN B = ¢), where AN B is the intersection of the sets -!
B and ¢ is the null set or empty set, then

P(AU B) = P(A) + P(B),

where AU B is the union of the sets A and B. This property holds for a countable
events if they are pairwise disjoint,
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EXAMPLE 2: 1la coin is tossed twice, the sample spaee s (T THITT L IFA = {HHHT}
and B3 *1{1 U then AN B = o Farther, 1 A) = ‘: as A has 2 ont of the 4 outeomes. and
P(B) = ;. Note that AU B = {HH, HT, "T'T'}; s0,

: 3 ;
WAUM=3=PMH¢WUI§
However, if A = {;ll-l.ll'l'} -illl(l C = {HT, TT}, then ANC = {HT} # ¢. So, P(AUC) = ‘
whereas P(A) = § and P(C) = % So, here P(AUC) # P(A) + P(C). It is possible to show
that

;
4

P(AUB) = P(A)+ P(B) - P(An B)

If an event is de:.;;(‘ribe(l as at least one tail, then the event is {HT, TH, TT} and the probability
of the event is 5, as out of 4 elements of the sample space, 3 elements are favourable to the
event.

Given an event A, its compliment A€ is given by the set difference S — A. Figure 4.1 shows
regions corresponding to various related events, given two events A and B. Note that AN B*
is the intersection of events A and B¢. The region for AN B is the intersection of events A
and B. The event A¢ N B corresponds to the intersection of the events A° and B. Finally the
remaining region indicates the intersection of the events A° and B°.

FiG. 4.1 Some events related to two given events A and B (for colour figure, please see Colour

Plate 1)

4.2.1 Conditional Probability
We need to update the probability values if new information is given. Consider the following
example.

twice. We have seen in Example 2 that the probability of at
ot is {HT, TH, TT}. If we are given additional information
«, then the sample space is constrained to {HT. HH.
TH}. So, under the condition that one toss has resulted in a head, the sample space shrinks. Now
for at lt*a‘st one tail. the event in the new sample space is {HT,TH}. So, the probability has reduced

' 2 ¢ , asance of o information. This computation is captured by
from 3 to 2 for the event in the presence of more inforn ¢
ility.

4 3
using the noti .onditional probab

sing the notion of conditio I P(B) # 0, then
P(AN fi]

If A and B are two events such that
P(A|B) = T

T P(B)

EXAMPLE 3: Consider tossing a coin
least one tail is Ei The corresponding eve
that one of the tosses has resulted in a hes
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It is the probability of A conditioned on B. It is undefined if P(B) = (?-_[" the current XA
it A is the event specified by at least one tail and B is the event specified by one (0ss that |
resulted in a head, then B = {HH, HT, TH}; so, P(B) = % Note that AN B = {THHT. s,

I
wiN

P(A|B) =

ENEIENTN

as computed earlier in this example.

We have another important concept called independent events. We say that two ever
and B are independent if P(AN B) = P(A) x P(B). So, if A and B are independent, ther,

P(ANB) _ P(A) x P(B) _
PE) - B A

P(A|B) =

4.2.2 Total Probability

F1G. 4.2 An example to illustrate total probability

Consider the Venn diagram shown in Fig. 4.2. Here, event A is represented by the elliptical rex
and there are 4 events Cy, C2, C3 and Cy that overlap with A. We can represent A using th:-

overlapping sets by
A=(ANC)U(ANC)U(ANC3)U(ANCy)

The four overlapping sets in the union are disjoint as C,, C2, C3 and Cj; are disjoint. Let
Bi=ANC;fori=1,23,4
So, P(B;) = P(A|C;)P(C;). So,
P(A) = P(B,) + P(B;) + P(B3) + P(By)
Hence,
P(A) = P(A|C1)P(Cy) + P(A|C2)P(C2) + P(A|C3)P(C3) + P(A|C4)P(Cy)
We know that P(C;|A) = ZAISIPEC) g4 i general

P(A|C,)P(C,)

P(C|A) = —
(A= BAIC)PCY + PIAICS) P(Ch) + P(AICSP(Cy) + PLAICP(C)
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4.2.3 Bayes’' Rule and Inferoncc\/

Let us examine Bayes’ rule and inference based on

conditional probabilities. We consider some of

the terms:

L]

P(C,): Prior or initial probability of event (.
Model of the world (A) under each C,: P(A|C,)
How to infer P(C}|A). or what is the probability P(C,|A) or equivalently how the prior

pmbabilz'tg_; P(C,) gets updated to the posterior probability P(C;|A). Let us consider an example
to appreciate these ideas further.

EXAMPLE 4: Let C) and C; be two chests such that C; has 20 white balls (WB) and 10 red
balls (RB); C; has 15 WBs and 15 RBs.

If one-of t'he two Cbests is picked with equal probability and a ball randomly picked from the
chest is WB, what is the probability that it came from C;? We have the following information:

- Prior: P(Cy) = P(C5) =
- Given: P(WBJ|C)) = 2, P(RB|Cy) = 1 and P(W B|C;) = P(RB|C3) = }
- Needed: P(Ch|WB) = P(WB|Cy)P(Cy)

P(WBI[C,)P(C.)+P(WBI|C2)P(C3)
) o Iy
(%)(§)+(5)(5} T

Let us consider one more example.

EXAMPLE 5: A new COVID-19 test claims to have 90% true positive rate (sensitivity)
and 98% true negative rate (specificity). In a population with a COVID-19 prevalence of
Tﬁlﬁﬁ (one out of 1000), what is the chance that a patient who tested positive is truly positive?

Let us consider the following:
- Let A be the event that a patient is truly positive; So, P(A) = 0.001.
- So, A (S — A) is the event of being truly negative. So, P(A€) = 0.999.

- Let B be the event that the patient tested positive.
- We want P(A|B). Let the data of sensitivity and specificity be summarized as shown in

Table 4.1.

TABLE 4.1 Relevant probabilities of positive and negative tests

True/Test Positive Negative

Positive 0.9 0.1
Negative 0.02 0.98

The rows in Table 4.1 correspond to being truly positive and truly negative whereas the

ested positive and tested negative.
ested positive when truly positive is 0.9 (true positive

rate); so, the probability of being tested negative when truly positive is 0.1.
- ‘Si]];il.arl\; in the S('('UII(I'I‘(JW, the entry 0.98 is the probability of being tested negative when
truly n(%ﬂtiV(* (true negative rate) and 0,02 is the probability of being tested positive when

the patient is truly negative.

columns signify t :
- Note that the probability of being t
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We need to compute P(A|B); we can use Bayes’ tile to obtain P(A|B) given P(B|A) p(,
P(131AY) and P(AY) as follows:
P(AIB) I’(BM_)P(A)
(AIB) = BBIAVPIA) + P(BA°)P(A)
" ‘ 0.9 x 0.001
~ 0.9 x 0.001 + 0.02 x 0.999

= 0.0431

So. more than 95% of those testing positive will be actually negative.

We can compute conditional probabilities using the chain rule. The chain rule is typically .

on multiple applications of Bayes’ rule.
Consider P(A|B,C) for events A, B and C. It may be computed using the follo»

G Pl P(A) x P(B,C|A) P(A) x P(B|A) x P(C|A, B
_ X ; _ X x «B)
PABC) = — . P(B.C)
Similarly,
p(a|B,C) < PUA9) X P(B.CIAY) _ P(A°) x P(BIA°) x P(C|4%, B)

P(B,C) - P(B.C)

So: if we compare P(A|B,C) and P(A¢|B,C), we need to consider only the numerators == -
denominators of both the quantities are equal to P(B,C). In such cases, we can write

P(A|B,C) x P(A) x P(B|A) x P(C|A, B)
and |
P(A°|B,C) x P(A°) x P(B|A°) x P(C|A¢, B)
4.2.4 Bayes’ Rule and Classification

(l;'t- C) and -Cg be two classes, with their respective prior probabilities being P(C,) and /(.
Iven an object z, we can compute the posterior probabilities using Bayes’ rule as follows:

P(Cy|z) = P(z|Cy)P(C)
P(z|Cy)P(Cy) + P(z|C;)P(Ca)

and
P(Cy|z) = P(-TIC?)P(C?)
| P(z|C\)P(C)) + P(x|C,)P(Cy)
“(:f assign z to class C if P(Cy|z) > P(Cy|x)
du}ug 15 Lo assign the test pattern z to the cl
this with the help of a simple example.

» else we assign z to class C. What we are essenti
ass with the larger posterior probability. We illust:"
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Covariance between x1 and x2 = -0.68 Covarlance between x1 and x2 = 0 Covariance between x1 and 2 = 0.66

1 0.66
0.66 I

FiG. 4.10 Normally distributed two-dimensional points (for colour figure, please see Colour
Plate 1)

Note that when ¥ is a diagonal matrix, we have a circular shape for the distribution of points
(Fig. 4.10 (b)). When the off-diagonal entries are non-zero, we have elliptical regions (Fig. 4.10 (a)
and (c)) with different orientations based the polarity of these entries.

4.5 THE BAYES CLASSIFIER AND ITS OPTIMALITY

We have seen in Section 4.2.4 how posterior probabilities are obtained from prior probabilities. We
have seen that
P(z|C,)P(Cy) Likelihood x Prior

= Posterior =
P(z) oste Evidence

P(Cilz) =

Note that P(z) = P(z|C1)P(C1) + P(x|C2)P(C2); it is a normalizer to ensure that P(Cy|zr) +
P(Cs|r) = 1.
The Bayes classifier assigns a test pattern r to C, if P(Cy|z) > P(C;|x), else to C5. So, for a

given . the probability of error is
P(error|z) = min(P(C\|r), P(C2|z))

So, the average or expected error across all possible values of x is
[ Plerroria) s = [ min(P(Cil2). P(Calo) fe)de

Here, f(z) is the PDF of x and it is fixed; note that for every r, we take a decision so that
Plerror|r) is minimum. So, the Bayes classitier is optimal in the sense that it minimizes the
average probability of error or error rate. So, it is the minimum error rate classifier.
Note that
P(C|z) > P(Ca|r) = P(z|Cy)P(Cy) > P(x|Ca) P(Cy)

We consider some examples to illustrate the use of the Bayes classifier.
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EXAMPLE 15:  Consider two classes defined in terms of how the values of = are dist i}, .
cach class as follows:

0<a<?2
else

P 1<z<6

1 , y
P(a|Cy) ={ 0 Plz|Ca) ={ 0 elae

Let us assume that P(Cy) = P(Cy) = 0.5; the priors are equal. Let z = 2. Then the DOt
values

B P(z|Cy)P(CY) _ % X 10.5) 2z 0.7
P(Cy|r) = P(x|C\)P(C\) + P(z|C2)P(C2) ~ 1 x (0.5) + % % (0.5)
and
1 v (05
P(Cilr) = P(z|C»)P(C2) g-%10.5) =~ 0.3

P(z|C1)P(Cy) + P(z|C2)P(C2) ~ I x (0.5) + L x (0.5)

B

So, the pattern x with a value of 2 is assigned to class C; by comparing the posteriors as P(( Aar
P(Cs|r).

EXAMPLE 16: Let two classes be normally distributed with the same variance o2 = 1. Lot
mean /1, of Class 1 be 2 and the mean of Class 2, 2, be 4. Let the prior probabilities be equa| -
the two classes, that is, P(C;) = P(C3) = 0.5. Let the test pattern be x = 2. Note that w: .
compare either the posterior probabilities or the numerators of the posteriors as the denomina:
are the same for both the posteriors. So, we consider the numerators in the posteriors for (', o
C: (they are f(x|Cy)P(Cy) and f(x|C3)P(C>). These numerator quantities are as follows:

2-2)2 -
[z =2|C) x P(Cy) = 7%;56_% T % 0.5 = 70'2&;
2-4)2
f(x =2|C3) x P(Cy) = 75:.38—%‘—#-. x 05 = %5

So, P(C)|r) :%% and P(Cs|z) 75-2’:?8—, = P(Ci|z) > P(C;|z)
So, assign the test pattern = 2 to Class C,.

It is possible to extend these ideas to d-dimensional vectors (d>1).
Recall that multi-variate normal, for example, is characterized by mean vector u and th
covariance matrix X. If the vectors are d-dimensional, then g is a d-dimensional vector
¥ is a d x d symmetric matrix, that is, 2i; = Eji. All the diagonal entries are variances: ¥
the variance of the i feature; ¥, ; is the covariance between the it" and Jt" features.
So, the decision making in the d-dimensional case is as follows:

o I f(x|C1)P(Cy) > f(z|C2)P(Cy), assign  to C, else assign x to C,.

o« If P(C))= P(C,), we need to compare only the likelihood values f(z|Cy) and f(x|C2).

» If the covariance matrices are equal, that is, ¥y = X2 = 02/, then the covariance matrices
diagonal and all the diagonal entries are equal to o2,

* Under the given conditions, f(z|C,) > f(z|C2) = e~ 4E-1) hz-m)  ~f@—na)' o —s
(2 = )" (T ~ py) > (2 = pa)(x — po).
This means assign = to C) if the squared Euclidean distance be
squared Fuclidean distance between r and 12,
is closer to r based on Euclidean distance.

tween x and g is less than '
. 4 sy gl
equivalently assign r to that class whose




The Bayes Classifier 97

This 18 depicted in Fig. 4.11. Note that the decision boundary (the broken line) that separates
the two classes is the perpendicular hisector of the line joining the two means. Any test pattern
r falling to the left of the decision boundary is classified as belonging to ('); k;r:iruts on the
right-hand side of the decision boundary are classified ns belonging to Class ;.

F1G. 4.11 Minimal distance classifier

This simple classifier is called the minimal distance classifier (MDC) and it is optimal
when the priors are equal and the classes are normally distributed with the same covariance
matrix; the covariance matrix is diagonal with the same entries in the diagonal locations.

If ¥y = ¥y, it is possible to show that assigning x to C) is optimal if the squared Mahalanobis
distance between r and j; is smaller than that between z and 2.

4.5.1 Multi-Class Classification

We have discussed the use of the Bayes classifier in the two-class case. It can be easily used to deal
with multi-class cases, that is, when the number of classes is more than 2. It may be described as
follows:
» Let the classes be Cy, Cy, - -+, Cy, where ¢ > 2.
» Let the prior probabilities be P(Cy), P(C2), ---, P(Cy).

Let x be the test pattern to be classified as belonging to one of these ¢ classes.
Compute the posterior probabilities using Bayes’ rule

P(z|Ci)P(C;) o
g:l P(I‘CJ)P(CJ)' fori=1,2, .q

P(Cilx) =

Assign the test pattern x to class C; if
P(Ci|z) > P(Ci|x), fori=1,2,--- ,q

In the case of a tie (two or more of the largest-valued posteriors are equal), assign arbitrarily to
any one of the corresponding classes. In practice, breaking the tie arbitrarily is the prescription
suggested for any ML model. _ o
In this case, the probability of error is the sum of the posterior prulmhili.tms of the remaining
¢—1. We know that the posteriors across all the g classes add up to 1, that is, 377 P(C\|x) = 1.
So, if u is assigned to class C, then the probability of error is 1 — P(Ci|x).

In this case also, we have average probability of error as

/ P(error|r)P(x)dr = /(1 - P(CY|®))P(x)dx
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This is the minimum possible because for every x, we are choosing the class that has the 1.,
posterior. So, P(Cyr) is the largest and 1 — P(Cy|x) is minimized for x. So, even in the
class case. the Bayes classifier is optimal by being the minimum error rate classifier. It ¢, (|
with a mix of both categorical and numerical attributes provided the required probat, |
are known.

So. the Bayes classifier is an optimal classifier and is the ideal choice for classification. Houw.
it 1s used more as a benchmark classifier for theoretical comparisons. In practice, it is diff;
to obtain the underlying probability structure. Some of related simplifications that are poy,
in practice are discussed in the next two sections.

4.6 PARAMETRIC AND NON-PARAMETRIC SCHEMES FOR
DENSITY ESTIMATION

The Bayes classifier is an optimal classifier. It is versatile in terms of being used in applicatio;
involving mixed variables. However, a major bottleneck in its effective use is the assumption 1.
the underlying probability structure is available. We need to have the prior probabilities and
PDF or PMF for each class. We will consider the estimation of prior probabilities.

EXAMPLE 17: Consider a tweet, and out of 100 people in a community, let 10 from ~
{1. 3. 12, 21, 33, 54, 66, 75, 84, 93} have retweeted while the remaining 90 did not.

It is possible to view the retweeting pattern z as a binary string of length 100, where the -
bit is 1 if the i** person has retweeted for i = 1,2, - - , 100, else it is 0.

Let p be the probability of retweet; then the corresponding probability may be captured U
p* (1 —p)'~*". Note that this quantity selects p if z* = 1 and (1-p) if ' = 0, where ' is the
bit of .

We assume that people retweet independently; then the joint probability is the product
the individual probabilities. So, the joint probability is p- - - 1=-p)---p---(1 =p)=p%1 —p
This is the likelihood of 10 out of 100 people retweeting and the remaining 90 not retweeting. 11
logarithm of the likelihood is I(p) = 10logp + 90log(1 — p). Note that the maximum value of th
likelihood is the same as the maximum value of the logarithm of the likelihood as logarithm i
monotonic function.

The derivative of /(p) with respect to p gives us 3p—° - igr-op =0=100p =10.So. p=0.1 = |,
it is actually an estimate of p called the maximum likelihood estimate (MLE). It & out !
n people have retweeted, then MLE of p is p = ;f- It is called the maximum likelihood estini"
because the estimate maximizes the joint probability or likelihood.

4.6.1 Parametric Schemes

Here, we typically assume that the formn of the underlying PDF or PMF is known and estimate Ul
parameters involved. In Example 15, we looked at n independent trials of a Bernoulli RV whit!
amounted to the Binomial distribution with Ekl=np=p= ElY _ & (refer to Exercise [0
the end of this chapter for more details on Elk] = np.) " y

Mazimum Likelthood Estimation (MLE)

Fhe maximum likelihood estimate appcears to be a simple and intuitively appealing scheme 1V
dealing with estimation of parameters. We will consider the case of a continuous RV.
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A quick comparison of the MLE and BE schemes is given below:

 Both MLE and BE are pammetric estimation schemes. Both of them assume that the functic,,
form of the underlying density is known and the parameters need to be estimated. For examy))
if we assume that the density is binomial, we need to estimate the value of p that COTTES oy )
to the probability of success; the probability of failure is 1 — p.

* Both of them assume that the training data points are drawn independently from the unky,,,
density. .

« MLE assumes that the parameters are unknown but are deterministic quantities. For ex, mpl,
the estimate of p in n Bernoulli trials (binomial) is p = % where k is the number of suce..,
out of n trials. However, BE assumes that the unknown parameters are random; for exar,,|
in the case of Bernoulli data, we assumed that the unknown parameter p is an RV and it |,
beta density.

* In the case of normal density, MLE assumes that the unknown mean is deterministic ay .
estimates mean, s, using the training data only. The estimate is i = %EL, Ti, as discusse]
in an earlier section.

¢ In the case of BE, for estimating the mean of the normal:

~ The conjugate prior density is normal with mean p;, and variance o2,.

- Because of the use of conjugate prior, the posterior is also normal. If the posterior is nory,.|

with mean 4y and variance 0%, then it is possible to show that

no? a?
— in % —_ i
i no?, + o2 Hn + no2 + o2 e

where the data is normally distributed with mean u and variance 02 and u,, is the samy!

mean or the MLE.
— Note that the estimate of the mean by the BE scheme coincides again with the estimate o

2
o _
the MLE scheme when n — co. Then we have uy = p, as e — 0 as n — oc and
no;, +o
no? no?

7 =% —=a=Tlasn =0.
no;, +o no;,

— Note that BE gives the estimate of the mean as a weighted combination of the MLE valuc

2 2

; : : no o
ttn and the mean of the prior given by y;,. These weights are e Sias (R, gy
nof, + o? e ol

and they add up to 1; such a weighted combination is called a convex combination.
— So, BE is a generalized version, of which MLE may be viewed as a special case.

4.7 CLASS CONDITIONAL INDEPENDENCE AND NAji VE
BAYES CLASSIFIER

In this section, we examine the difficulties associated with the practical usage of the Bayes classilic’
and then provide a simplified scheme for estimating the probability structure.

4.7.1 Estimation of the Probability Structure

There are two different schemes for the estimation of parameters: non-parametric schemes
parametric schemes.
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Non-Parametric Schemes

Here, the training data is used to directly estimate the PDF. We
schemes first to estimate the probability density of a clags.

Let n independently drawn training patterns be given from a class. Let each of them be an

l-dimensional vector. Let the probability that any onc of them falls in a small region, R, in the

l-dimensional space be Pr. Let some & out of the n patterns fall in /2. The RV here is binomially

distributed as out of n independent trials, some k fall in R and the remaining n — k fall outside R
The expected value of k, E[k] = n x Pp (

will consider the non-parametric

refer to Exercise 10 at the end of this chapter). Using its

expected/average value as an estimate of k, i},, we get k=mnx Pr.So, P = &
"

Assume that k = k; this assumption is valid when the training data size n is large. Then

kanPRZPPsz}E
n

If the unknown PDF is px (x), then Pg is obtained by taking the integral of the PDF in the region
R. So. Pr = fR p(X)dzr. But we have Pr = % So, from these two we get

k:”X/RPX(x)

If we assume that px(x) is some constant p, in the region considered, because the region R is very
small, then

k=nxpxVg,
where we get

/ px(r)dz =p | dx =pVgr
It it

based on p being constant and Vg being the volume of the region.
So, the estimate of the PDF, p, in a small region is given by

1 k
p-—nvn

This estimate makes sense when the value n is large and the region R is very small. So, the non-
parametric schemes demand very large value for n with the density being constant in R. Hence,

they are not widely used in practice.

Parametric Schemes

Here. we assume that the functional form of the PDF is given and we need to estimate the

undeﬂying parameters. There are two popular schemes:

« Maximum Likelihood Estimation (MLE): Here, likelihood corresponding to the n indepen-
dently drawn training patterns is maximized to find the estimat_es of the gnderlying parameters.
The estimate obtained is such that the probability of generating the given patterns from the
resulting distribution is maximum.

» Bayesian Estimation (BE): In this case, in addition to the assumptions made by MLE, the

parameters are assumed to be RVs with known prior distribution based on domain knowledge.
The priors are converted into posterior probabilities using the likelihood of the training data.
A popular scheme is to use the maximum a posteriori (MAP) estimate.
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We start with an example to make the ideas clear.

SXAMPLE 21: Consider the data shown in Table 4.5. There are two (‘.lﬁS'S(.‘ﬁ, Coy and ¢,

three training patterns from each of the classes. Each pattern is (rlmmrtm"l'ml by .fhr“ bin,
features. There is a test pattern in the form of pattern 7. We will ""'_J_M"h St ‘Fih to estin
the probabilities using the 6 training patterns and use the Bayes classifier to classify patter;, -

TABLE 4.5 Data set to illustrate the difficulties associated with the Bayes classifier

_I"att.ern Featurel Feature2 Featured3 Class

1 0 0 0 Co
2 1 0 1 C)
3 1 0 0 Co
4 1 1 1 C,
| 5 0 1 1 Ci
| 6 0 1 1 Co
; S ——
L N Let us consider the Bayes classifier. Note that the prior probabilities are P(Cy) = P(C, =
using either MLE or BE.
" Consider pattern 7. The corresponding posterior probabilities are:

e Using Bayes’ rule, we have P(Co|Featurel = 1, Feature2 = 0, Feature3 = 1)
x P(Cp) x P(Featurel = 1, Feature2 = 0, Feature3 = 1|Cy)

x P(Co) x P(Featurel = 1|Cy) x P(Feature2 = O|Featurel = 1,Cy) x P(Feature3 -
1|Featurel = 1, Feature2 = 0, Cy).

 Similarly, using Bayes’ rule, we get P(C1|Featurel = 1, Feature2 = 0, Feature3 = 1
P(Cy) x P(Featurel = 1, Feature2 = 0, Feature3 = 1|1Cy)

x P(Cy) x P(Featurel = 1|C;) x P(Feature2 = 0O|Featurel = 1,Cy) x P(Feature3
1|Featurel = 1, Feature2 = 0, C,)

1. The MLE estimates are as follows:

e For class Cy:

— P(Featurel = 1|Cy) = 3
~ P(Feature2 = 0| Featurel = 1,C,) = i=1
- P(Feature3 = 1|Featurel = 1, Feature2 — 0,C)=%=0
» For class Cy:
~ P(Featurel = 1|C,) = —§-
~ P(Feature2 = 0|Featurel = 1,C)=1
P(Feature3 = 1| Featurel = 1, Feature2 = 0, C)) =

1
|
1
5130. (tismﬁ the MLE estimates, P(Cy|Featurel = 1, Feature2 = 0, Feature3 = 1) x
X = U.

-0

X 3 °

[ P

Using the MLE estimates
1)&%x%x%xl=-‘-.

8o, P(Cy|Featurel = 1, Feature2 = 0, Feat = = 1 1 el
0, Feature3 = 1)(= 0). Featured = 1)(= § > P(Co|Featurel = 1, Featuw

So, pattern 7 is assigned to (',

for class C}, we have P(C\|Featurel = 1, Feature2 = 0, Feature$

by employing the estimates obtained using the NLE schei
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2 The BE estimates are as follows:
o Tor Class (:
P(Featurel = 1]C) "::" ;!'
P(Fcature2 = 0| Fcaturel 1,Cy) = 11 2

. , . 142 3
P(Featured = 1| Featurel = L, Feature2 — ), Co) =

1
1+2 3

o For Class ('y:

GD(I"! ”i?”'f'l == ]I(‘]] e _‘! -1 — Ll

‘ 2 r|
P(Featurc2 = O|Featurel = |, (i) = i—:—L — 5
P(Feature3 = 1|Featurel = 1, Feature2 = 0, Cy) =1 =12
So, P(ColF (ufm(l = 1, Feature2 = 0, Featured = 1) x ,— X2x2xi=2,
) 57373~ 15
Similarly, P(Cy|Featurel = 1, Feature?2 = (), f‘fnf“”f-“l rxix ,ix% # 5! :%_
So. P(C 1|Fra.tm el = 1, Feature2 = 0, Feature3 = 1) > P(Cy|Featurel = 1, Feature2

0. Featured = 1).
So pattern 7 is assigned to C; by employing the estimates obtained using the BE scheme.

Some observations based on Example 21:

+ Both the MLE and BE schemes have assigned pattern 7 to the same class, that is, Cy. This is
not the case in general. We will examine it in Exercise 12 at the end of this chapter.

« Itis possible that the MLE scheme estimates zero posterior probabilities for two or more classes.
leading to a difficulty in taking a meaningful decision. This problem will not be encountered
when we use BE. This property also will be examined in Exercise 12 at the end of this chapter.

« On large data sets, that is, when n — oo, the BE scheme gives the same estimate as the MLE
scheme. So, the recommendation is to use the BE scheme for estimation when the training data
is small by integrating the domain knowledge in the form of a suitable prior.

« On larger sized training data, it is good to use the MLE estimate as it depends solely on the
data.

4.7.2 Naive Bayes Classifier (NBC) \/

We have discussed the difficulties associated with the use of the Bayes classifier in practice. One
simplification that is popular is based on class-conditional independence. The resulting classifier
is called the naive Bayes classifier as it is a Bayes classifier with some simplification. It may be
explained using an example.

EXAMPLE 22: Consider the data used in Example 21 and Table 4.5. Let us again consider the
posterior probabilities for pattern 7. They are:
P(Featurwl=l,F('nlurel—_(],FcatureS:ljC'g)x P(Co) and

P(Colpattern 7) = p(Feamr.glzI,Fcature?:O,FeaturcS:l)
P(Featurel=1,Feature2=0,Feature3=1|C,)x P(Cy)
P(CI |Pattern 7) = P(Feat‘urel-.——],Ff:ﬂflll'f2=0.Ftafure3=])

Note that both the posteriors have the same denominator. So, instead of comparing the
posteriors, we can compare their numerators for the sake of simplicity as was done in the previous
subsection.

We have P(Cy) = P(Cy) = 0.5. We need to compute the likelihood values for the two classes. We
can simplify the computation using class-condit ional independence as follows:
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: ? = = (), Feature3 = 1|Cj)
For Class Cy, P(Featurel = 1, Feature2 0, ! 1co)
=tPU-‘mrm~lvl = 1|Cy) x P(Feature2 = 0|Cy) x P(Feature3d = ll'C,;,}
Similarly, for Cy, P(Featurel = 1, Feature2 = 0, Featured = 1|C }2
= P(lertm‘rl = 1|C) x P(Feature2 = 0|C1) x P(Feature3 = 1|C))

What we have done is to write the probability of a conjunction cun'df'timmrl on Class ¢
as the product of probabilities of individual conjuncts that are conditioned on the (),
class-conditional independence.

The required probabilities may be calculated using the MLE scheme for Class Cy as:

P(Featurel = 1|Cy) = 1.
P(Feature2 = 0|Cy) = 2,

» P(Feature3d = 1|Cy) = g

So, P(Colpattern 7) oc 4 x 1 x 2 x

=
Il
S

Similarly, for C; we have

P(Featurel = 1|C)) = —;—
P(Feature2 = 0|C;) = 3
P(Feature3 = 1|C)) = §=1

So, P(C\|pattern 7) o 3 X 2 x 3 x1=1

So, we assign pattern 7 to C\ as P(Cy|pattern 7) > P(Cy|pattern 7)

Some general observations from Example 22:

In this example, NBC has made
give different results in general.

NBC employs class-conditional independence. It is given in general as

P(fi=v, fo =v,,---

the same decision as the Bayes classifier. However. thet

»Ji=ulC) = P(f; = v|C) x P(fa=v|C) x --- x P(f; = |C

where C is the class and fi = v; means feature ; (fi) will have value ;.
The decisions of NBC coincide with that of the Bayes classifier if class-conditional independ:

NBC has simplified

the computation and even the
problem here as the

MLE scheme estimates did not crea
estimates of these simpler proba

bilities are non-zero.

' rule. Some important issues discus

* Bayes’ rule Plays an importan
e The Bayes classifier ig an optij

» Akin w the classifiers based yes classifier can be used when the data set -
categorical and

mixed pre features, that is, numerical, However, we require the underly!”
probability structure to use the Bayes classifior effectively.

» It is possible to estimate the probability structure usin
maximum likelihood approach or the Bayesian scheme.

t role in understanding the Bayes classifier.

mal classifier. It minimizes the probability of error.
on DTk, the Ba

g training data with the help of
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- O ' . ) . ye " " , . X i
. 'Er-tmmlu n of the pmhnlnht) structure can be simplified hy AssUming sliss-conditionsl
independence.

i B L] e lagga N . ¥ .
o« NBC lIHRl\LS use of class-conditional independence and is a popular choice when the data set
has mixed type features.

« NBCis a lmea‘r classifier and hence is a good candidate for providing explanation to the
users and domain experts.

EXERCISES

1. Consider the discussion immediately after Example 1. Show that KNN is equivalent to prior
prc')hal)ilit_v-lmsed classification, when k& = n and the probabilities are estimated based on
ratio of frequencies.

9 Consider tossing a coin twice. What is the sample space? Find the probability that the first

toss results in a tail. What is the probability that the second toss results in a head?

Show that P(AN B) = P(A|B)P(B) = P(B|A)P(A).

If events A and B are independent, then show that A° and B are independent.

Suppose a fair coin is tossed three times. Let A be the event that we get two heads in these

three tosses. Let B be the event that the first toss shows up heads. Obtain

a. P(A) and P(B)
b. P(A|B) and P(B|A)

6. Consider the joint probability function Py y(x,y) given in Table 4.2. Obtain the marginal
probability values of Py (y) for all possible values of y.
7. Consider the discussion on binomial RV at the end of Section 4.3.3. The probability of k tails

oo

out of 1 tosses is given by Px (k). Show that

a. Px(k)>0for0<k<m, and
b. Yoo Px(k)=1

8. Consider the discussion before and in Example 13 of computing the expected value of a
function of an RV. Let X be an RV with its expectation E[X]. Il h(X) =ax X + b, where a
and b are some constants, find Elh(X)].

9. Consider an RV X that is uniformly distributed in the range (0,1). Plot its PDF, fx(z), and
CDF, Fx(_r).

10. Given that the mean of a Bernoulli-distributed RV is p and variance is p(1 —p) (refer Example

14), show that the mean of the binomial RV is np and its variance is np(1 — p) using the fact
that binomial RV corresponds to n independent trails of thv‘ Bvruml!li RV. If a coin is tossed
n times (independently), getting k l}l*;l(.ls is binomially distributed. So, mean of binomial RV
is (k) and variance is E((k - E[k])%)-
11. Show that if two classes, Cy and C, aren
matrices being equal to X, then it is optuna

normally distributed with equal priors and covariance
| to assign x to Cy if

(z - it E e = m) < (z- p2)Z (& = p2).

mple 22. Classify pattern 7 using NBC and estimate the

12. Consider the discussion in Exa 2 o |
Assume that prior probabilities are equal to 3 for bot h

probabilities using the BE scheme.

the classes.
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13.  Consider the training data used in Example 21 and shown in Table 4.5. Classify 1}, .
pattern for which Featurel = 1, Feature2 = 1 and Feature3 = 0 using the Bayes o],

a. Use the MLE scheme for estimating the probabilities. Is there any problem?
L. Use the BE scheme for estimating the probabilities.

14.  Solve Q13 using NBC instead of the Bayes classifier. Use the MLE and BE schemes to est
the probabilities.

PRACTICAL EXERCISE

1. Download the Olivetti Face data set. There are 40 classes (corresponding to 40 people) .
class having 10 faces of the individual; so there are a total of 400 images. Here, each .
viewed as an image of size 64 x 64 (= 4096) pixels; each pixel has values 0 to 255 which
ultimately converted into floating numbers in the range (0,1]. Visit https://scikit-lear:
org/0.19/datasets/olivetti\_faces.html for more details.

Split the data sets into train and test parts. Perform this splitting randomly 10 times .
report the average accuracy. You may vary the test and train data set sizes. Use NB(
classify the test data set. Obtain the accuracy on the test data.
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