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CHAPTER 2

Nearest Neighbor-Based Models

Learning Objectives
At the end of this chapter, you will be able to:

« Explain the proximity measures of classification
» Give a brief overview of distance measures

o Describe the ML models that use the nearest neighbor concept

2.1 INTRODUCTION TO PROXIMITY MEASURES

Proximity measures are used to quantify the degree of similarity or dissimilarity between two or
bt £

more pattern vectors. These patterm Vectors can re represent décuments images or even entire audio
or video filgs. Proximity measures are often used by machine learning (ML) algorithms to compare

and classify or group or make predictions using these patterns. There are many types of proximity
measures and the popular ones are:

ﬂuclidean distance: This the most popular distance as it is intuitively appealing. It measures
the straight-line distance between two points in a multi-dimensional space. So, it is also called
as the crow flies distance. =~
> _Losine similarity: This measures the cosine of the aqgle between two vectors and is often
used in text analysis to compute similarity between_a pair of documents,
e Jaccard similarity: This measures the ratio of the cardinalities of intersection over union of
two sets and is often used in recommendation systems to compare users’ preferences.
* Hamming distance: This measures the number of positions at which two binary strings differ
and is often used in error correction codes.

In the following section, we will discuss various distance measures.

2.2 DISTANCE MEASURES _/

A distance measure is used to find the dissimilarity between patterns represented as vec tors.

Patterns which are more similar should be closer. The distance function (d) could be a metric

Or a non-metric. The most popularly used famlly of dmtanLe memus is called the Minkowski
metric. N e -
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A metric is a type of measure that possesses three key atiributes: positive reflexivity, syminetry
and triangular inequality: -

~«  Positive reflevivity: d(a, x) =0
o> Symmetry: d(r.y) = d(y, x)
. Triangular inequality: d(x,y) < d(x,z) + d(z,y), where x,y, 2 are any three patterns.

< A i . 4 " " - . . 3 1 nE
The following sections describe different types of dissimilarity /similarity (proximity) measures
between pattern vectors.

2.2.1 Minkowski Distance

The Minkowski metric is a commonly used family of distance metrics which can be expressed as

. .
d(p.q) = (Z(lpk - qkr)) .
k=1

where r is a parameter that determines the type of metric being used and p and g are l-dimensional
——
vectors. Some variations based on selecting the value of 7 are:

sl L. norm: Here, r = oo and d(p,q) = mazimum(|p(k) — q(k)|), k € {Liwts L)

oL, norm: In this case, r = 2 and d(p,q) = (k= (Ip(k) - g(k)|?))? is the Euclidean distance:
this is the most popular variation.

A& L, norm: In this case, r = 1 and d(p, q) = (Eﬁ,_.l(\p(k) — g(k)|)) is the city-block distance.
Fractional norm: It is possible that r is a fraction. In such a case, the resulting distance is called
fractional norm. It is not a metric as it violates the triangle inequality.

The importance of different norms will be examined while explaining the nearest neighbor classi-
fiers. It is important to ensure that all features used in the distance measure have the same range
of values, as attributes with larger ranges may gain undue advantage. Normalisation of feature
values can help to ensure that they are in the same range.

The Mahalanobis distance is another popular distance measure that is used in classification.
and it is computed using the covariance matrix. The squared Mahalanobis distance is given by

d(z,y) = (-y'T ' (x-y)

EXAMPLE 1: If z = (5,2,4) and y = (3,4,2), the Euclidean distance between them is d(r,y) =
V(5 = 3)7+ (2 — 4)* + (4 — 2)2, which equals 3.46.

2.2.2 Weighted Distance Measure

To assign greater importance to certain attributes, a weight can be applied to their values in the
weighted distance metric. This metric takes the form

L
diz,y) = (Z wi x (x(k) — y(kn”) :
k=1

where wy represents the weight associated with the k** dimension or feature.
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EXAMPLE 2t 1o = (5,2.4) and y = (3,4, 2), with weights assigned as wy = 0.3, wy = 0.5 and

0.2, then d(a. y) is calenlated as 0.3 x (5~ 3)2 4+ 0.5 x (2 — 4)? + 0.2 x (4 —-2) =4.
The weights determine the significance of each fenture, with the second feature being more
important than the fivst, and the third feature being the least significant in this example.

we

2.2.3 Non-Metric Similarity Functions "

This category includes similarity functions that do not obey the triangular inequality or symietry.
osistant to outliers or extremely

‘hl‘ rare (‘0“1“1(‘"1‘ g nh‘[‘(l l.m‘ i"Nl e or Htll'i“ r( ‘I-'-Jl. nne - "Y i
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noisy data. The squared Euclidean distance is an example of a non-metric, but it provides the
ranking as the Euclidean distance metric.

One example of a non-metric similarity function is the k-median distance between two
vectors. Given & = (x(1),2(2),...,z(l)) and y = (y(1),y(2),...,y(l)), the formula for the k-

median distance is
d(z,y) = k-median{|z(1) — y(1)|,...,|z(n) = y(n)I},

where the k-median operator returns the kth value of the ordered difference vector.

Another similarity measure is
'y

iyl

tween the vectors x and y. It is symmetric because
between z and y. A possible distance function

S(zx,y) =

which corresponds to the cosine of the angle be
cos(#) = cos(—0) and it represents the similarity
corresponding to the cosine similarity, S(z, y) is

d(z,y) =1-S(z,y)

Note that d(r.y) is symmetric as S(z,y) is symmetric. However, d(z,y) violates the triangular
inequality. Example 3 demonstrates how it violates the inequality.

EXAMPLE 3: Let 7, y and z be three vectors in a two-dimensional space, where the angle
between r and z is 45 and the angle between 2 and y is 45. Here, d(x,y) =1 - cos(w/2) = 1, while
d(z,z) + d(z,y) = 1 — cos(w/4) + 1 —cos(n/4) =2 = ‘/222) = 0.586. So, d(z,z) + d(z,y) < d(z,y),

violating the triangle inequality.

nshtein Distance/ &J}J" df:ﬂ’\r@”‘ 'Y

The Levenshtein distance, also known as edit distance, is a measure of the distance between two
——e e e e e . o St —— . ; i

strings, It is determined by calculating the minimum number of mutations needed to transform ™

string s1 into string s2, where a mutation can be one of three operations: changing a letter, inserting

a letter or deleting a_l;a't;t:c;.r. The edit distance can be defined using the following recurrence relation:

2.2.4 Leve

m— —

o d(*7,%") =0, (two empty strings match)

L]

e d(s,“")=d("",5)= IIs||. (distance from an empty string)
e d(s1+chl,s2+ch2) = min [d(s], s2)+ {if chl = ch2 then 0 else 1}, d(s1+chl,s2)+1,d(s],s2+
ch2) + 1]

If the last characters of the two strings are
in an edit distance of d(s1,52). If they are

identical, they can be matched without penalty, resulting
different, chl can be changed into ch2 with an overall
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cost of d(s1,s2) + 1, or chl can be deleted and sl edited into 82 + ch2, resulting in a cost
d(s1.52 + ch2) 4+ 1, or chl can be inserted Into s2 resulting in a cost of d(sl + ffr‘*'l ,82) + 1. Th
minimum value of these possibilities gives the edit distance. For instance, if we consider the stripg.
SCAT” and “RAT”, the edit distance between them is 1 because only one letter needs to 1,
changed. However, if we consider the strings “CAT” and “LAN”, the edit distance between they,
is 2 because multiple changes are required to transform one into the other.

2.2.5 Mutual Neighborhood Distance (MND)

In this case, the function used to measure the similarity between two patterns, r and y, is define
as S(xr.y) = f(x.y,¢€), where € denotes the context, that is, the surrounding points. In this contex
all other data points are labelled in increasing order of some distance measure, starting with th:
nearest neighbor as 1 and ending_with the farthest point as N — 1. The label of x with respect 1
y is denoted by NN (z,y), and the mutual neighborhood distance (MND) is calculated as MND
(x,y) = NN (z,y)+ NN (y,z). MND is symmetric, with NN (x,x) set to_0; it is also reflexive.
However, it does not satisfy the triangle inequality and is not a metric.

Example 4 explains how the context, the collection of points in the vicinity, changes the MND
between points p, ¢ and r.

EXAMPLE 4: Consider Fig. 2.1.

Y Y
A A
Xr

xp

XS

xt

> X Xy — X
(a) (b)

F1G. 2.1 Mutual neighborhood distance illustration

The ranking of the points p, g and r can be represented as shown in Table 2.1 and their mutual
nearest neighbor distances are shown in Table 2.2,

TABLE 2.1 Relative positional ranking TABLE 2.2 Mutual distances

1 2., . ‘ MND(p, ¢) = 2
P{g T~ MND(q,r) = 3
q|lp v MND(p,7) = 4
riq p

Corretlsponding to Fig. 2.1 (b), the ranking of the points p,q,7,s,t and v can be represented
as shown in 'I“al)ltf 2...5 and their mutual nearest neighbor distances are shown in Table 2.4. It can
be seen that in the first case, the least MND is hetween p and g, whereas in the second case, it is

between ¢ and 7. This oceurs by changing the context or introducing more points in the vicinity
of one of the points.
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TABLE 2.3 Relative positionnl innking TABLE 2.4 Mutual distances
| 2 3 l 0 Wi \iIlf;r ") %

! MNDflg.r) =13

p r s {1 v MND(p.r) =7

T

We can view /-dimensional hinary patterns as binary strings of length [ Let p and
binary strings. Some of the popular proximity measures on snch binary patterns are:

2.2.6 Proximity Between Binary Patterns

‘| be twe [-bit

« Hamming Distance (HD): If p(i) = ¢(i), we say that p and ¢ match on their ' nt

else (p(1) # q(2)). and p and ¢ mismatch on the ith bit. Hamming distance is the number of
mismatching bits of the [-bit locations.

EXAMPLE 5: Consider the two 10-bit patterns p and ¢ given by
p = 1000001000

g = 0000001001
The Hamming distance is 2 as they mismatch in bit positions 1 and 10.

« Simple Matching Coefficient (SMC): Let us define the following:
My, is the number of bits where pis 0 and ¢ is 1
Mo is the number of bits where p is 1 and ¢ is 0
Moo is the number of bits where p is 0 and q is 0
M, is the number of bits where p is 1 and g is 1
Now we define SMC as follows:

B My + Moo
SMC(P:9) = 373 Mo1 + Mo + My

« Jaccard Coefficient (JC): It is defined as

B My,
JC(P9) = 00 + My

ExAMPLE 6: Consider again

p = 1000001000

g = 0000001001
Here, flJ“ =1, MQU = 7, M(][ = M]() = 1. So,
SMC(p.q) = 73557 = 2 =08and
IC(p,q) = ;7477 = 3 = 033

1

T
I

—
[

2.3 DIFFERENT CLASSIFICATION ALGORITHMS BASED ON THE
DISTANCE MEASURES_ -

Many classification algorithms (classihiers) inherently depend upon some distance between a pair

of patterns. We discuss them in this section.

o i TN TR
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2.3.1 Nearest Neighbor Classifier (NNC)

Here. a test pattern r is classified based on its nearest neighbor (NN) in the training data.
Specifically. let

X = {(r1.h),(x2.2).-.., (xn-ln)}

be the labelled training data set of n patterns. where each element is a tuple: the first component
of the tuple is the pattern vector and the second component is its class label.

Let cach pattern be a vector in some I-dimensional space. Here, r,, 1 = 1.2,.. ., n is the 4
training pattern and [, is its class label. So, if there are p classes with their labels coming from
the set

£ {015 Cse-iCL),

thenl, € £, fori=1.2,. ... n. Now the nearest neighbor of the test pattern r is given by

NN(r) = arg :l:j:{cﬂ:..r,).
where r, is the ;' training pattern and d(r. r,) is the distance between r and r,. Intuitively,
NN(r) is in the proximity of £ s0 NNir) 15 at a minimumn distance from r and is maximally

similar to £ The NN rule assigns r the class label of NN(r)

EXAMPLE 7: Let the training set consist of the following two-dimensional patterns with associ-
ated labels:

TabLe 2.5 Example data set

Zy=(07.07). 4 =1 ;=08 08) [, =] ry=(11,07), I4=1
£y =0T 11) I l; fs=(0111) s =1, Lo = (30.20), 1y =2
r=(3727) Iy =2 2o = (40.27) lg=2; ro = (3.7.3.1), lg =2
rg=(4131) b, =2 2 =(43.27) 4, =2 12 =(4.4,3.1), lj3 =2
Zi13=13.103) lj3=13 14 =31 06) L1, =3, ;= (.7,04), ljr =3
Li16 =(34,00) he =3, 517=(3909) lyy=3,. 1,,= (3.9.0.6), [1n =3

th

For the «'" pattern r, the class label is [, and {, € {1.2.8) for« = 1,2,
soen in |"ip, 272 Here ' & correspotids to Class |
o Class 3. Now if there is a test pattern 1 = (2]
to all the trawmning patterns

., I8 This ean be
v cortesponds to Class 2 and %' corresponds

O.7), 1t 15 necessary 1o find the distance from T

Let the distance between a tramming pattern 7 and 7 be the Euclidean distance

d(x.T) = \/(x(1) = T(1))? + (£(2) - T(2))?

The distance from a point T to every point in the trainin

_ g st can be computed using the above
formula. For 7" = (2.1, 0.7), the distance 1o Iy is

dir,. T)=\(0T-21)2+(07-07)2 =14

We find, after calculating the distance from all the 1% training points to T, that the closest

neighbor of T' is ry, which has a distance of 1.0 from T and z5, which belongs to Class 1. Hence,
T is classified as belonging to Class 1.
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F1G. 2.2 Example data set in graphical form

2.3.2 K-Nearest Neighbor Classifier /

In the k-nearest neighbor (KNN) algorithm, we find the k nearest neighbors of a test pattern r
from the training data &X', and then assign the majority class label among the k neighbors to x. To
determine the & nearest neighbors of x, it is necessary to calculate the distance between r and each
of the n training patterns in the /-dimensional space. The distance metric used depends on the
specific problem at hand, and can be Euclidean distance, Manhattan distance or cosine distance,
among others. The class label of z is then determined based on the majority class label among its
k nearest neighbors.

Assuming that Fig. 2.2 is a visual representation of the KNN algorithm being applied to a
test pattern 7', if the value of k is set to 5, the five nearest neighbors of T are r3, ri4, T3,
Ts and ;5. Among these five patterns, the majority class is Class 3. By using this method of
selecting the majority class label among the k nearest neighbors, the errors in classification can
be reduced, especially when the training patterns are noisy. While the closest pattern to the test
pattern may belong to a different class, considering the number of neighbors and the majority
class label increases the likelihood of correct classification. Figure 2.3 visually demonstrates this
phenomenon.

It indicates that the test point T is closest to point 5, which is an outlier in Class 1 and is
represented as ‘z’. If the KNN algorithm is used, the point T will be classified as part of Class 2,
which is represented by ‘+’ The selection of k is a crucial aspect of this algorithm. In the case
of large data sets, k can be increased to decrease the error. The value of k can be determined
through experimentation by keeping aside a subset of the training data as the validation data and
classifying patterns from the validation set using different values of k using the training patterns
to compute the neighbors. The value of k can be selected based on the lowest error observed in

classification.
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FIG. 2.3 Classification of T using the KNN classifier

EXAMPLE 8: Based on Fig. 2.2, if the pattern T is (2.1, 0.7), its nearest neighbor is r3, and it
would be classified as part of Class 1 if the nearest neighbor algorithm is employed. However, if the
five nearest neighbors are considered, they are z3 and x5, both belonging to Class 1, and x4, 113
and x,6, belonging to Class 3. Following the majority class rule, the pattern T would be classified
as part of Class 3.

2.3.3 Weighted K-Nearest Neighbor (WKNN) Algorithm

This algorithm is similar to the KNN algorithm, as it also considers the k nearest neighbors.
However, this algorithm takes into account the distance of each of the k neighbors from the test
point by weighting them accordingly. It is also known as the distance-weighted k-nearest neighbor
algorithm. Each neighbor is associated with a weight w, which is determined by the following

formula:
By =4 = if (di # dy)
0 if (dx=d)

Here, j represents the neighbor’s index in the list of k nearest neighbors, while dx and d, are the
distances between the test point and the k*" neighbor and the j*! neighbor, respectively. The value
of w; ranges from 1 for the nearest neighbor to 0 for the k*® (most distant) neighbor. Using these
weights, the WKNN algorithm assigns the test pattern to the class with the highest total weight ol
its representative neighbors among the k nearest neighbors. Unlike the traditional KNN algorithmn.
the WKNN algorithm employs a weighted majority rule, which takes into account the effect of
outlier patterns in classification.
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EXAMPLE 9t Counsider 7= (2.1,0.7) in Iig. 2.2. For the five nearest points, the distances from
T are
d(T.x3) = L0 d(T,0va) = 1OV d(T, ay3) = LOS; d(T', ) = 108, d(T,16) = 1.30
The weight values will be
Wy = 1.0
1.30-101) "
W4 = J30-100) T 0.97

- g‘:m_l_g.j% o g
w3 = ([ T30-100) 0.73

130-108) i
Ws = {30-1.00) 0.73

wyg =0

Summing up for each selected class, Class 1 to which z3 and x5 helong sums to 1.73, and Class 3
to which 14, 13 and x16 belong sums to 1.7. Therefore, the point T belongs to Class 1.

It is possible that the KNN and WKNN algorithms assign the same pattern a different class
label. This is also illustrated in the following example.

EXAMPLE 10: In Fig. 2.2, when T = (1.9,2.4), the five nearest patterns are rg, =5, T4, Z7 and
r3. The distances from T to these patterns are

d(T, xg) = 1.17; d(T,zs) = 1.53; d(T, z4) = 1.77; d(T, x7) = 1.83; d(T, z3) = 1.88
The weight values are
We = 1

_ (1.88-1.53) _
Wws = m = 0.493

wy = SE8-LT — 0,155

(1.88—1.17)

_ (1.88-1.83) _
W7 = (188-1.17) 0.07

w3 = 0

Summing up for each class, Class 2 to which zg and z7 belong sums to 1.07 and Class 1 to
which zs, 74 and z3 belong sums to 0.648, and therefore, T is classified as belonging to Class 2
by WKNN. Note that the same pattern is classified as belonging to Class 1 when we use the KNN
algorithm with k£ = 5.

2.3.4 Radius Distance Nearest Neighbor Algorithm =~

This algorithm is an alternative to the KNN a!_gg_rj,thm that considers all the neighbors within a
specified distance r of the point of interest. This algorithm can be described as follows: ~

1. Given a pc;;t, T, identify the subset of data points that fall within the radius r centred at T,
e baescazoa e —

denoted by -
Br(T) = {z:i € X s.t. [T — Xi|| < r}

2. If Br(T) is empty, output the majority class of the entire data set.
3. If Br(T) is not empty, output the majority class of the data points within Br(T).

—

This algorithm_i;s useful for identifying outliers, as any pattern that does not have similarity with
the patterns within the chosen radius c¢an be identified as an outlier. The choice of the value of
radius r is critical as it can affect the performance of the algorithni.

———
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By considering all neighbors within the specified radius, this algorithm e be more effectiy,
than the traditional KNN algorithm, especially when the nearest neighbor is too far away to 1,

relevant. P

EXAMPLE 11: For the example shown in Fig. 2.2, from point T = (2.1,0.7), the patfrrm which
are located within a radius of 1.45 are ,. ry, T3, Ts, T13, T14 and 1. The majority of thee.
patterns belong to Class 1. T is therefore assigned to Class 1.

2.3.5 Tree-Based Nearest Neighbor Algorithm

This section explores how to find nearest neighbors in the transaction databases. Transactior,
databases store data collected from various sources such as businesses, scientific experiment.
physical systems monitoring or supermarket transactions. Also known as market basket dat:.
these databases contain the transactions made by each customer, with each transaction consistine
of items bought by the customer. The transactions can differ in size, and the objective of analysin:
this data is to establish a relationship between certain items in the transactions. This process.
known as association rule mining, aims to identify the occurrence of one item based on the
occurrence of other items. To simplify and expedite the process, only frequently occurring items
are considered, with a minimum support value chosen to exclude items occurring less than the

minimum support. One of the tree data structures used to represent the processed transactional
database is the frequent pattern (FP) tree.
To construct the FP tree:

1. The first step is to determine the frequency of each item in the transaction database. Frequenc,
of an item is the number of transactions in which it occurs in the transaction database. Consider
only those items whose frequency is greater than or equal to the user-defined minimum support:
sort them in descending order of frequency.

2. Eachentry in the transaction database is then arranged in the same order of frequency of items
from largest to smallest, ignoring the infrequent items.

3. The root of the FP tree is created and labelled null. The first transaction in the database is
used to construct the first branch of the FP tree based on the ordered sequence.

The second transaction is added to the tree using the same order. The common prefix between

the second and first transaction is added to the existing path, increasing the count by one.

the remaining part of the transaction, new nodes are created. This
entire database.

FFor
process is repeated for the

The following example shows how the FP tree can be constructed from a transaction database.
which is in the form of a table of size 4 x 4. Consider a 4 x 4
square serving as a pixel. The squares are assi
For instance, the

square to represent digits, with each
gned a positional value, as illustrated in Table 2.6.
digit 0 can be represented using the 4 x 4 square depicted in Table 2.7 and
denoted by the positional values 1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15 and 16. Table 2.8 displays how
the digits 0, 1, 4, 6 and 7 can be represented using this method.

TABLE 2.6 Positional representation of a pixel 4 TABLE 2.7 Representation of ‘0’ in a 4 x |
x 4 table

- table
112 q (T T
5 16 ] 7 | 8 _

9 1011112
1301471516

G

et | et |
l—-—-lv—a-—-
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The frequency of each item can be determined while scanning the transaction database pre-
sented in Table 2.8. Sorting the items from the highest to the lowest [requency results in the
following list: (12:5), (1:4), (16:4), (4:3), (5:3), (8:3), (9:3) and (15:3). With the minimurn support
set to 3, only items with a frequency of 3 or more are included in this list. It is important to note
that any ties that may arise are settled arbitrarily.

TABLE 2.8 Transaction database

Digit Transaction (Positional information of a digit)

1,2, 34,5 8,9, 12, 13, 14, 15, 16
8,12, 16
5, 7,9,10, 11, 12, 15

5,9, 10, 11, 12, 13, 14, 15, 16
2,3,4,8,12,16

I b= O

4,
1,
1,
1,

The transaction database in Table 2.9 shows the transactions with the items ordered based on
their frequencies. With support value set to 3, only items with a frequency of three or more are
retained in this table. The items with a support of two or less are removed.

TABLE 2.9 Transaction database with transactions ordered according to frequency of items

Digit Transaction (After removing non-frequent items)

0 12,1,16,4,5,8,9,15
1 12, 16, 4, 8

4 12,1,5,9, 15

6 12,1,6,5. 9,15

7

12,1, 16, 4, 8

Using this ordered database, an FP tree is constructed, as shown in Fig. 2.4.
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The voot node points to the starting item of the transactions, which in this case is 12. Fa.,
transaction is processed sequentially, and the corresponding nodes are added to the tree. The conp:
of each item is incremented along the path that nlready exists, and new nodes are created for the
remaining items in the transaction.

For example, in the first transaction, the path goes from the root node to 12, then to 1. 14
5. 8.9 and 15, Each of these nodes has a count of 1. In the second transaction, since the
item after 12 is not 1, a new branch is created from 12 to 16, and the counts of 12, 16. 4 and

incremented by 1. This process continues for each transaction until the e
processed.

4. Nneéext
& are
ntire database has beer,

The resulting FP tree is a compressed representation of the frequent items in the transactio,
database. Each node in the tree corresponds to an item, and the count of each item is stored i

the corresponding node. The header node for each item points to all the nodes in the tree that
contain that item.

FP Tree-Based Nearest Neighbor: To identify the nearest neighbor of a test pattern in
transaction database, the FP tree can be utilised with the following approach:

pel

Firstly, remove items in the test pattern that are below the minimum support threshold. Then
arrange the remaining items in the pattern according to their order in the FP tree.

Next, search the tree from the root node for the branch containing the first item in the test
pattern. If this branch exists, continue to search for the next item in the pattern, and so on.
3. In the event that an item does not exist, examine all the branches from that point and choose

the one with the maximum number of common items with the test pattern. This will determine
the nearest neighbor.

EXAMPLE 12: Suppose we have an FP tree as shown in Fig. 2.4 for the transaction data
Table 2.8. Let us consider a test pattern with features 1, 2, 3, 4, 6,7,8.12 an
below the minimum support threshold, we are left
the order in which they appear in the FP tree,
of the FP tree (12), we can compare the rema
the test pattern has the maximum number of
classified as belonging to digit 7.

set in
d 16. Removing items
with 1, 4, 8, 12, 16. By arranging these items in
we get 12, 1, 16, 4, 8. Starting from the root node
ining items in the test pattern. It is observed that
items in common with digit 7. Therefore. it can be

2.3.6 Branch and Bound Method

The branch and bound method seeks to efficiently

find the nearest neighbor by taking advantage of
an ordered data structure such as a tree-like str

ucture. By clustering the data into representative
, can search for the nearest neighbor while avoiding

neighbor than the current best value found. Lower
bounds can be computed for the distances in the other clusters, allowing us to eliminate clusters
that cannot possibly contain the nearest neighbor.

This recursive method involves clustering the data

points hierarchically into subsets until there
are clusters of one point, and then findin

g the nearest neighbor to a new point T'. This is done by
computing lower bond b; with reference to cluster J and recursively branching to the cluster with

the smallest b, until the nearest neighbor is found or the bound is not satisfied.
Note that b; for a cluster j is obtained by

b, =d(T,,uJ)

where y; is the centre of the cluster j and r; is its radius.

— ?'J.'
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The branch and bound method has shown significant improvements over the standard nearest
neighbor algorithm on an average.

For the patterns shown in Table 2.5, the branch and bound method is demonstrated using
Fig. 2.5. The first step involves clustering the points into subsets. In this example, the points
of Class 1 form Cluster 1, the points of Class 2 form Cluster 2, and the points of Class 3 form
Cluster 3. Further sub-clusters are formed by clustering Cluster 1 into Clusters la and 1b, Cluster 2
into Clusters 2a and 2b, and Cluster 3 into Clusters 3a and 3b. At the next level, each point is
taken as a sub-cluster. Figure 2.5 also shows the centres and radii of the clusters created for the
patterns shown in Table 2.5.

Cluster_1 . Cluster_3

Cluster_2

13 = (3.52,0.57)

u1 = (0.88,0.88)
r3=1.95

2 = (3.89,2.77)

=055 r2=215
[x1, x2, x3, x4, [x6, x7, xB, x9, [x13, x14, x15,
x5, x6] x10, x11, x12] x16, x17, x18]
d(utl, T) =123 du2, Ny=2.74 du3, =143

Cluster_1a Cluster_1b
Cluster_2a Cluster_2b Cluster_3a Cluster_36

el pib =(09,1.1) 3a = (3.2,0.5) 43b =(3.83,0.63)

naﬂfg}ss Ab = 0.55 r3a=17 r3b=185
A .x3] [x4, x5] [x13, x14, x16] [x15, x17, x18]
duta =121/ \dwe.N=127 dj3e, )=1.12 / \ diu3b, 7)=1.73

u2a = (3.46,2.6) uzb =(4.2,2.9

x15

r23 = er =
[x8, x10, x11, x12] x17 x18
du2b, T)=2.15

Fi1c. 2.5 Working of branch and bound algorithm for Table 2.5

EXAMPLE 13: To find the nearest neighbor of a new point T' = (2.1, 0.7), the lower bounds b,

for each cluster j are computed.
For Cluster 1, by = d(T, 1) =11 = 0.68. For Cluster 2, by = 0.59. For Cluster 3, b3 = 0.52.
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Since by i the asmallest, the sub-elusters of Cluster 3 are searched. The centre of Cluster 3 |
(32.00) with a radinsg of 1.7, and the centre of Cluster 3b is (3.83, 0.63) with a radins of | o,
This gives 1ise to by, = 0568 and by, = 0.22. The socond sub-cluster of Cluster 3 is searched ;.
point 75 is found to be the closest point to T.

1'he bound d is ealenlated as the distance
are preater than d, Clusters 1 and 2 need not be searched.
neighbor of 1

from T to point x5, which is 1.63. Sinece by and /4,
Therefore, 1, is declared as the nesre

2.3.7 Leader Clustering

Leader clustering is an incremental clustering approach that is commonly used to cluster lary
data sets that cannot be accommodated in the main memory of the machine processing ti;
data. As a result, the data is stored in a secondary storage device and must be transferred t,
the main memory as needed. Accessing the secondary storage is significantly slower than accessir:
the main memory, which means that algorithms that access the same data many times require mor
secondary storage accesses and disk scans. However, there are clustering algorithms that only acce--
the data once, known as incremental algorithms. The Leader algorithm is an incremental algorithrmn
The fundamental idea behind this algorithm is to group patterns in close proximity to eact
other into the same cluster based on a specified distance threshold. Specifically, a point is assigricd
to an existing nearest cluster if the point falls within a threshold distance from the representative
(leader) of the cluster; if there is no cluster in the vicinity (threshold distance) of the point, then
a new cluster is initiated with the point becoming the leader of the new cluster.
The algorithm works as follows:

1. Assign the first data item to a cluster and designate it as the cluster leader.

9. For the next data item, calculate the distances between the data point and the leaders of
existing clusters. If the minimum distance is less than the specified threshold, the data point
is assigned to that cluster. Otherwise, a new cluster is formed, and the data point is assigned
to it as the new cluster leader.

3. The next data item is considered and Step 2 is repeated; the process continues until all data
items are assigned to clusters.

The main strength of the algorithm is that it needs to scan the data set only once to cluster the
set. It should be noted that the order in which the data is presented to the algorithm can affect
the resulting clusters.

EXAMPLE 14: Consider the data given in Fig. 2.5. Let the data be processed in the order
T TDgcoiny r15 and the threshold T be set to 1.5. To start with, x, is assigned to Cluster 1 and
is the leader of Cluster 1. Then r2, 3, T4 and z5 are assigned to Cluster 1 since the Euclidean
distance from each one of them is below the threshold 1.5 (that is, 0.1, 0.4, 0.4, 0.6, respectivelyv)
from r,.

The Euclidean distance from z, to xg is 2.6 (which is more than the threshold) and hence
forms a new cluster, Cluster 2, for which xg is the Cluster leader; 7, rg and ro are assigned to
Cluster 2, since the Euclidean distance from them to zg is below the threshold (that is, 1.0. 1.3.
and 1.3, respectively, from xg). The Euclidean distance from x,¢ is more than 1.5 with respect to
ry and ¢ (which are, respectively, 4.2 and 1.6). So, a new cluster, Cluster 3 is formed with zp &
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the cluster leader; @y and @y are assigned to Cluster 3, since the Euclidean distance from z0 to
them is below the threshold (that is, 0.4 and 0.2, respectively, from ).

The Euclidean distance from a3 is more than 1.5 with respect to @y, z¢ and 1o (which are,
respectively, 2.4, 1.7 and 2.9). So, a new cluster, Cluster 4 is formed with x5 as the cluster leader;
Tya. 150 6y 17 and g are assigned to Cluster 4, since the Euclidean distance from zy3 to them
is below the threshold (that is, 0.3, 0.6, 0.4, 1.0 and 0.9, respectively, from T13).

Figure 2.6 shows the clusters formed using the Leader algorithm with a threshold value of 1.5.

x Cluster 1 + .L ]
+ Cluster 2
B Cluster 3 + + 0
A Cluster 4
2.0 +L
1.5 4
b 4
1.0 4 5
Lx A
x X
A A A
0.5
L A
A
1 T T T T T T »

1.0 1.5 2.0 25 3.0 3.5 40

F1G. 2.6 Clusters formed using the Leader algorithm for the data set in Table 2.5 with leaders
shown as ‘L’

24 KNN REGRESSION "

It is possible to use KNN for regression also. So, in this case we are given a set X" of n labelled
examples, where -

—_—————

——

A= {(I1,y1), (332sy2)! sy (xn-yn)}
Here z;, i = 1,2,...,n is a data vector and y, is a scalar. It is possible for y, also to be a vector
in some applications. However, we restrict our attention to scalar ;8. The regression model needs
to use X to find the value of y for a new vector T. In the case of regression based on KNN, we

perform the following:
1. Find the & nearest neighbors of r from 1t data vectors. Let them be 2l 20
2. Consider the y values associated with these r's. Let them be y' y%, ... T

- S ————————
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1 ' A e ‘('t('fl valie y
3 Take the average of these y's and declare this average value to be the predi e of |,
associnted with - So, the predicted value '_'[_»VL__"_".ly ity is,
—

i = ;(y' P uk o 4y
We will illustrate it using the following example.

EXAMPLE 15:  Counsider the data shown in Table 2.10.

TABLE 2.10 Example data for KNN regression

Number Pattern Target
() (i) (¥:)

(0.2,0.4) 8 —
(0.4,0.2) 8 —
(0.6,0.4) 12
(0.8,0.6) 16
(1.0,0.7) 19
(0.8,0.4) 14
(0.6,0.2) 10
(0.5,0.5) 12 =~
(0.2,0.6) 10

Jowao o s wn =

\./Let/the new pattern be = = (0.3,0.4). Let us see how to

KNN regression. Let k = 3; the 3 NNs of = from the patterns in the table are (0.2,0.4), (0.4.0.2)
and (0.5,0.5). The corresponding target values observed in the table are 8, 8 and 12, respectivelv

The average of these values is i%ig = 9.33. So, the predicted target value for r — (0.3.”4
is 9.33. =
= 7

Further, we are given that the underlying

azx,(1) + bx;(2) + ¢, where zi(1) is the first component and z;(2) is the second component of the
vector r,.

If we use the first three entries in the table and solve for a, band ¢, we get a = b = 10
and ¢ = 2. Note that the remaining 6 rows satisfy this |

] inear model. Using the model, the target

va.ltu;[gr\zrf_(()_.gh,_q.cl) is 9. The value prf:_c}_ic_:gggl___byH@N“;EE@iQJ}M_g‘_E_)_,Q:Q_.__The squared error is
(9~ 9.33)° = 0.1111 that is obtained by using the predicted valuo (9.33) and the value given b
ground truth (9).

predict the target value for r using

model is a linear model such that W = fx) =

We will now examine the r
We consider the Boston H
Service concerning housing in
and the number of rooms in t
in $1000s. We consider the fi

patterns for traming and the remaining 50 patterns
predicted target values of the 50 test

The corresponding MSE
the average of the squared er

ole of KNN regression on a real-world data set.

ousing data set, it contains information collected by the U.S. Census
the Boston area. It has 13 features including crime rate in the tow!

s the median value of owner-occupied homes
in the set for this experiment. We use 200

for testing. The true target values and the
patterns are shown in Fig. 2.7.

values for difterent values of &k a

re plotted in Fig. 2.8 where MSE is
Tors across the collection of patt

erns.
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50 | e True value
a5 4L kNN prediction
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Target value
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Test pattern number

F1G. 2.7 KNN regression: results on the Boston Housing data (for colour figure, please see Colour
Plate 1)

24 o
23 -
g
o 22 -
;
3 211
"]
&
o 20 -
=
19 : : ; ‘ [
2 4 6 8 10
Number of neighbors

F1G. 2.8 IKNN regression: MSE values on the Boston Housing data

2.5 CONCENTRATION EFFECT AND FRACTIONAL NORMS

A major difficulty encountered while using some of the p(.)pular dilst.amce measures like the Elll’j[iklt‘ﬂ.‘lll
distance is that the distance values, between various pairs of points, may not show much dynamic
range, Consider the following example.

EXAMPLE 16: Let p=(4,2) and ¢ = (2,4) be two points in a two-dimensional space. Values of
the distance using some popular distance norms are:

» L., norm or the Max norm: Maz(]4 —2|,|12 —4]) = 2.

e L, norm or Euclidean distance: 2\/§
e Ly norm or City-Block distance: [4-2]+2-4] =4
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FIG. 2.11 Accuracy of KNN using different norms (for colour figure, please see Colour Plate 1

2.6 PERFORMANCE MEASURES w \,

There are several measures used to evaluate the performance of ML models. We will consider some
of the popular measures in this section.

2.6.1 Performance of Classifiers /

o Classification Accuracy: Let n be the total number of patterns that are classified by a classi-
fication algorithm. Let n, be the number of correctly classified patterns. Then the classification
accuracy is

Classification accuracy = e —
N e

e Confusion Matrix: It captures the results in a compact form. This data can be compacted

further to better analyse the results. We illustrate this with an example. -

—

EXAMPLE 18: Let there be three classes Cy, C; and Cj. Let there be 200, 100 and 50 patterns
from classes C'y, C3 and Cs, respectively. Let a classifier classify these patterns into three classes.
as shown in Table 2.11.

TABLE 2,11 Confusion matrix for a three-class problem

True/Predicted C, Ca Cy

C 180 15 5
Cs 5 8 10
Cs 3 2 45

-
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The first row of the table shows how the 200 pntterng | ( Inssif
erns from Oy are classified: 180 of thermn are

M.'iﬂn“i l‘\ ( "1 : t-'l Are n .'iL’"l‘!l Lo ( l') f
‘ ”“ll OOonre g h" ! vi |
| ‘ r (<15 ) N4 : |f'l'l ( .ol ( y f
l I"'l‘r"-\' il‘t}lll ( 2 illll' row :‘ th‘\\'H 'lll" llH‘qi’[ ! "”I"rl\r’ row weonnt ) l( )

Note that classiication accurncy | i

) ‘ is obtained by consideri j

. ; : ' sidering the correctly classified patte

' . \\ ] - . " : ‘ Y Im [)rl terns
ﬁ:_hn'ilri“ A:‘ iln Il,im:tt ”l“; "1”]”' (l 1 80 patterns from 'y and A5 patterns from (') are correctly
classihed, as indicated by the diagg miries i " oy T y :
ety L R _“k. nal entries in the matrix, Mhey add up to 310. So, classifica-

SRS S Ay Se0 - Lhe pereentnge nceuracy is obtained by multiplying this number

by 100. So, 4h® percentage accuracy is 88.H7%, ‘ |

It is possible to an;mvt the confusion table by looking at the entries with respect to (/. The
compact table of size 2 x 2 is shown in Table 2.12.

snment of b patterns from 'y
{

TABLE 2.12 Compact confusion matrix for C)

——

True/Predicted C, C‘;tCL’\’C;J

Cy 180 20
Cy 8 142

This compact table gives us useful information that could be used in calculating other evaluation
measures. Now we are concerned with Cy and C; or not C, (classes other than C). The first
row of this table shows that 180 patterns of C; are correctly classified. This entry corresponds
to the correctly classified number of C) patterns to Class C,. So, these are called true positives
or TP, TP = 180.

ThéSecond column in the first row has 20 patterns. These patterns are from C, that are not
classified as belonging to Ci; they are assigned to C;. So, they are called false negatives or FN.
Here, FN = 20.

The first entry in the second row shows that 8 patterns from the other classes are assigned
to Class C;. So, they are called false positives or FP. So, FP = 8. The second entry in the
second row corresponds to 142 patterns from C, that are assigned to C'y. These are called true

negatives or TN. So, TN = 132& - .
We can use the confusion matrix entries, specifically TP, TN, FP and FN, to define additional

evaluation measures. They are:

— Precision: It is the ratio of TP to the total number of predicted positives (TP + FP). So,

i ; ; . 0,
precision in this example is 139 ~ 0.9574.

— Recall: It is the ratio of TP to the total number of positives in the
So, in this example, it is 355 = 0.9.
F1 Score: It is the harmonic mean of
i = - In this example, F1 Score = 0.9278.
Preciston T Racall

\ M““ have one more popular measure called area under the ROC (receiver operating

Characteristic) curve based on some additional quantities derived from the table:

*  True positive rate or TPR is given by
P /

™D _— —
II l] rrP _* l;‘

training data (TP + FN).

precision and recall. More specifically, it is

-

e TR TVl 4 g T TR
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-

i A

I’ + TN

o Dalse positive rate or FPR is given by
I'PR =

e the cmrve (AUC) ds obtained hy plotting a graph between FPR on the X-axis
(R()(.) W" i”ll.\lr',‘:.

o Avrea am m |
TR on the Y -axis. This is ealled the receiver operating characteristic

this with the help of the following example.

EXAMPLE 19:  Consider the entries in Table 2.12. The values are TP = 180, FP
EN = 20 and TN = 182. So, TPR = 8%z = 0.9 and FPR =155 = 0.042. So, (0.042.0.9) ¢iv
us a point for the ROC plot.

We obtain multiple points by computing probabilities and thresholding them as explained rex
Let there be two classes with labels 1 and 0. Let the training patterns from each class i
given by

Class label 1: (1,1), (2.2), (3,3), (4,4), (5,5)

Class label 0: (4,1), (5.2), (6,3), (7,4), (8,5)

Let the validation patterns be given by

Class label 1: (2,1), (1,3)

Class label 0: (8,4), (7,5)

If we find k = 5 nearest neighbors for each validation pattern from the training set, we obtain
details as shown in Table 2.13. Note that the table has 7 columns. The first column corresponds 1o
the validation pattern considered. There are 4 rows in the table corresponding to the 4 validation
patterns. The second column corresponds to the class label of these validation patterns. Note thar
the first two are from Class 1 and the remaining two are from Class 2.

TABLE 2.13 Computing probabilities and thresholding

Pattern Class 5 NNs Probability Th>0.3 Th>0.5 Th>0.7
(2.1) 1 (1,1),(2,2),(4,1),(3,3),(5,2) 0.6 .- 1 1 0
(1.3) 1 (2,2),(1,1),(3,3),(4,4),(4.1) 0.8 1 1
(8.4) 0 (8,5),(7.4),(6,3),(5,5),(5,2) 0.2 0 0 0
(7,5) 0  (85),(7,4),(55),(6,3),(4,4) 0.4 1 0 0

| Tpe third column lists (k =) 5 NNs, out of the 10 training patterns, of the validation pattern
given in r.ol.umn 1. The fourth column gives the probability that the validation pattern belongs to
Class 1. This probability is the ratio of the number of neighbors, out of 5, from Class 1 to the total
number of NNs considered, that is, 5.
For example, for the vulide_;;tiun pattern (2,1), three patterns, namely, (1,1), (2.2), (3,3) are from
( lu_a-a l‘, So, the probability is § = 0.6. Similarly, probabilities are calculated for the remaining three
validation patterns.
lu cohuuns 5 to 7, we use thresholds (Th) to convert the probability into 1 or 0. For example

. y 5.1 ; il i v -

w colun 5, if the probability is more than (Th =) 0.3, we put a 1, otherwise, a 0. Similarly, we
; ;. o9, . x

geta ], 0,1 inrows 2,3 and 4 based on the threshold (Th) value of 0.3. Entries in columns 6 and

7 are obtained as in column 5 but with thresholds 0.5 and 0.7, respectively.
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For each of the Tlnq‘\\hnlt“np_.,
By comparing with the tyne e
As fn“l‘l\\'ﬁ'

Wi ]'Il-l'.r' n Fllu-{\tilr‘!- ;1n‘.|,'|"””".“f “f ”"- fnlrr VH'I"

l:iflfln [mth-rrm
lﬂhi'l Piven in

colmmn 2. of the table, we get an (FPROTPR) pair

o For Th > 03, we pot TP - 2. I'N

; l 001 = 1 TN = 1. S0, FI'R ibs = 05 and TPR
240 ’
o For Th > 05 we get TP = 2, FN = 0, FP = ¢, TN = 2. S0, FPR = 55 = 0 and TPR
= }f[\ =
« For l1‘ll > 0.7, we geot T = 1. N = 1. I'p - 0, TN = 2. 90. FPR = ﬁ?i = 0 and TPR
= = 0.5.

T+1
So. by thresholding, we obtain diffore
curve. The standard rule is to conve
them to get FPR and TPR pairs.
Note that schemes for computing probabilities can differ whe
However, a similar thresholding scheme can be
probabilities are available.

't (FPR,TPR) pairs that are used in plotting the ROC
't the class decisions into probabilities and then threshold

n other classifiers are used.
used to obtain FPR and TPR pairs once the

velodon U 10, )54
2.6.2 Performance of the Regression Algorithms " j@‘ vdle Pedad

* Mean squared error (MSE): It is the most popular metric used for regression. It is
defined by ¥

; i g
P | a2
MSE = — E(y, )%

where n is the number of patterns, y; is the target value for the ;t» pattern and g, is the value
predicted by the regression model.

Mean absolute error (MAE): It is the average of the difference between the target and the
predicted values. It is given by

1 ¢ X
MAE = =% |y, — il

1=1

2.7 AREA UNDER THE ROC CURVE FOR THE BREAST CANCER
DATA SET

We consider the Breast Cancer data set for this experiment.

The total number of patterns is 569 and each is a 30-dimensional vector.

* There are two classes: Benign and Malignant.

*  We use KNN for classification with the value of k = FS. N

We use 171 patterns for validation and 398 patterns for training.

We used the sklearn platform for conducting the experiment,

*  We show the ROC curve in Fig. 2.12. ' ‘

Note the broken line in the figure. This indicates the possible lower bound.

Ideally the grey line, the ROC curve, should go vertical on the Y-axis trom 0 to 1 and then go
horizontal at Y = 1, parallel to the X-axis from X =0 to X = L.
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F1G. 2.12 ROC curve

for Breast Cancer data using KNN (for colour figure, please see (o)
Plate 1)

* So. in the ideal case, the area under the ROC should be 1.
* The ROC curve is almost ideal, but for the top-left corner.
* Note that the area under the curve, AUC, is 0.98.

SUMMARY

e We have considered neighborhood-based ML models in this chapter. They include:

KNN classifier; it is the NNC when & = 1. Evaluation of jts performance is based
classification accuracy.

Regression or function value estimation using KNN. Evaluation of the KNN-based es

mation scheme is by using the MSE.
— Clustering based on spherical neighborhood using a threshold value as the radius of t

“sphere. In the Leader clustering algorithm, each of the resulting clusters is represent
by its leader.

» We have identified the role of proximity measures in n
several proximity measures that are popularly used.

* We have detailed a tree-based NNC and a branch and bound-based NNC for efficiency.

» We have studied the concentration problem that results as a consequence of using the popul
integral norms including the Euclidean distance. We have discussed how fractional norms c:

overcome this problem by expanding the dynamic range of the distance values.

We have shown experimental results on the Wisconsin Breast Cancer data set for classificati
and the Boston Housing data set for regression.

eighborhood models. We have explor

- ® We have detailed the performance evaluation measures that can be used to analyse vario
ML models. Classification accuracy and MSE are the most popular for classification a
o regression, respectively.
/ » When there is class imbalance, that is, a class has a smaller number of patterns and t|
| other class has a very large number of patterns, then accuracy is not the right choice. Oth
( measures like F1 score need to be used.
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+ Explanation Cﬂimbility= These neighborhood Mi, models are hased on
The intuitively appealing fact that stmilar thin
NNC is a simple and transparent classifie

pattern is based on the

#8 exist in close proximity of each other.
v a8 the decision to assign a class Iabel to a test

Rl class label of ity nearest pattern. It is not difficult for experts in
an application domain to appreciate and understan how it works.
Even KNN and regression based on IKNN

experts to understand the decision

it gives different chlsl.erings and sets of leaders for different orders in which the data is
presented to the algorithm,. However,

it is transparent and easy to appreciate as the leaders
are good representatives for clusters,

EXERCISES

Use the Euclidean distance for computing the distance unless specifically stated otherwise.

1. Consider two l-bit binary strings p and q. How are HD(p, ¢) and SMC(
. Derive the condition under which SMC(p, q) > JC(p, q)
3. Letp=(4,2,5) and g = (2,1,-7)
a. Euclidean distance
b. City-block distance
c. Max norm (L)
d. Fractional norm (r = 0.25)

P, q) related?
for l-bit strings p and g¢.
- Find the distance between these two patterns using

4. Consider the points p = (3,0),q = (0,3)
m = 0.5. Is it a metric?

Give a two-dimensional example having 2 classes, where NNC is better than KNN with k = 3.

This example illustrates that NNC can perform better than KNN (k > 1) in some cases.

6. Consider the set of two-dimensional patterns: ((1, 1.5), 1), ((1, 2.5), 1), ((1, 3.5), 1), ((2, 1.5),
1), ((2, 2.5); 1),:((2; 3.5); 1), ((2:4):1); ((2.5,2.5), 1),((3.5, 1.5), 1), ((3.5, 2.5), 1), (3.5, 3.5),

2); ({35, 4.5), 2), ((4.5, 1.5), 2), ((4.5, 2.5), 2), ((4.5, 3.5), 2),((5, 4.5), 2), ((5, 5.5).2).((6,

3.9). 2), ((6, 4.5), 2), ((6, 5.5), 2), where each pattern is represented by feature 1, feature 2
and the class.

and s = (0,0). Consider the fractional norm with

If a test pattern T is at (2.6, 5.5), find the class of T using the nearest neighbor algorithm.
Find the class of T using the KNN algorithm, where k is 3.

Find the class of T using the WKNN algorithm, where k is 3.

Find the class of T using the radius distance nearest neighbor algorithm with the
radius = 2.5.

oo R

Consider two sets of two-dimensional points from two classes:

Class 1: (3.5,3), (4.5,1), (1,5), (2,6), (3.5,4), (4.5,3)

Class 2: (2,3.5), (2.5,1), (3.5,2), (3,2), (2.5,2), (2,1) o )
Consider a variant defined using the centroid data set. Let (l-entmldl b-t‘ the uwf\n (:f the six
vectors in Class 1. Similarly Centroid2 is the mean of the six vectors in Class 2. Note that



16

Al H Al
Machine Teamming  Theory and Practice

i« defined on a colleetion of n vectors Xy, Xa, ..o s X, as

I~ o
‘ontroid = X,
('entrode ” L

i=1

the mean vector, Centroid

that is. each of the new classes have o)

Now the controids are used as the training data, ’ i g : : :
cCentroid?2 . Using this train,

the contrond patterns NewClassy - Centrod 1 NewClassy
data. classily the 12 patterns given using NNC.

a  This classifior is called the minimal distance classifier (MDC). What is the advantage «,
using MDC?

b What is the classification aceuracy of MDC in this p

two classes. Plot the decision boundarie

roblem on the 12 patterns?

Consider the two-dimensional vectors  from
for NNC and MDC. These decision boundaries are piece-wise linear and they are obtaine
joring pairs of points, one from Class 1 and the other from Class 2. One side o

by consi
.

the decision boundary will have Class 1 patterns and the other side will have Class
patterns.

Class 1 Class 2

(Lo)  (-20)

(-1,0)  (0.1)

(0,0) (2,0)

Consider the data given in the following table.

Pattern | Vector (z) | Class label | Function f(z)
1 11 Cy 3
2 1 2 C 2
3 2 2 Cy 5
4 3 2 C, 8
5 4 2 Ca 11
6 4 3 Co 10
7 4 4 Co 9
8 5 3 Co 13

T . - - - ]

a. Use the Leader clustering algorithm on the 8 two-dimensional vectors using a threshold
value of 3. Each vector has two components. So, you need not consider the last two
columns for this problem. Give the leaders and the clusters obtained.

b.  For this problem, we need to consider all the columns in the data other than the class
labels.

i. Given that f((ry,r2)) = ax) + bz, + ¢, obtain the values of a, b and ¢ using the first
three [»lﬂl.vrns. and the respective f values. Verify whether the remaining 5 patterns
also satisfy this equation or not.

ii.  Consider the pattern (3, 1).

A ()htm_u its f value using f((3,1)) = 3a + b + ¢ where a, b and ¢ are obtained in
part (i) of the problem.

BI. Find its (k =) 3 nearest neighbors from the 8 patterns in the table.

C. Let f((3,1)) be the average of the f values of these 3 nearest neighbors. Obtain
the value of squared error for (3, 1) by using (f((3,1)) — f((3,1)))*



10.

11.

12.

13.

14.

15.
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Cluster the 12 patterns given in Q7 using the Leader algorithm. [1ee a threshold of 1.5 units
to clustal

a. Cluster the patterns in each class separately nsing the order in which the patterns are
given. Let .H']’ be the set of leaders obtained. Give Sl’

b, Cluster all the 12 patterns without using the class lahel. et .‘:‘{:‘ bhe the set of leaders
obtained. Assume that each leader helongs to a class if the cluster represented by the
leader has a majority of patterns from that class. What is 857

¢, Is there a difference hetween "a{ and .S'.j",’

Consider the data in Q9(a) and reduce the data set size as follows. Take a training pattern
+ Find out 3 (k = 3) nearest neighbors of x; break any ties in favour of the class to which r
belongs. If all the A neighbors are from the same class as that of x, then mark x. Perform this
over all training patterns and then drop all the marked patterns and report the reduced set.
Consider the following process called bootstrapping:

Consider a pattern r from the data given in Q9(a) and find 2 nearest neighbors z', z? from
the same class as r; compute 2’ by the mean of the k + 1 (3) vectors, that is, r and its 2 NNs.
Repeat this process on all the training patterns in the collection. Replace the training data
points with the x values obtained. What is the effect of this bootstrapping process? What
happens if = values are added to the training set instead of replacing it?

Consider a 4 x 4 square to represent a digit, with each square assigned a positional value
as illustrated in Table 2.6. The table given below depicts the digits represented using this
method.

Transaction database

Digit Transaction (Positional information of a digit)

1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16
4,8.12, 16

12,16
. 8,9, 10, 11,12, 16
.10, 11,12, 15

, 8
G}

O = o

Construct the FP tree for this table with minimum support = 3.

Consider the FP tree constructed in Q13, identify the label (digit) for the test pattern, T = 1,
5,910, 11, 12, 15.

Consider the data given in Table 2.12. Use k = 3 to compute the (FPR, TPR) pairs for the
thresholds Th > 0.3, Th > 0.5 and Th > 0.7 on the probabilities obtained.

PrAcCTICAL EXERCISES

1.

Randomly generate 100 values of r in the range [0,1]. Let them be xy,x2,... 0. Perform
the following based on the data set generated.
a. Label the first 50 points {xy,- s} as follows: if (@, < 0.5), then v, € Class,, else
x, € Class,.
b. Classification.
i Classify the remaining points, a1y rigo using KNN. Perform this for
k= 1.2.3.4.56, 20, 34,
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n Classfyv the yemaining  points,  rap, o0 on nsing WKNN. Perform  thig
A 1.2..04.5.20 30

me Classify the remaining points, rey..., Foo USing radius-based NNC. Perform ],
k=1,2,3.4,5,20 30

Compute the classification aceuracy in nll three cases and report. [Note: Classific

ACCUTACY = ""‘ Swhere n = b0, ne = munber correctly classified|

L

Cluster the entire set of 100 points (as mentioned in Q1) using Leader clustering. .,
ditterent values for threshold (1) and earry out the clustering,

1 et the clustering obtained using some threshold, 7; be C; = {C'lustery , Clustery, ... Clist.
Computer the purity value for each clustering, which is given by

1

Purity(C,) = Z: maximum(|Cluster; N Cluster, |, |[Cluster;
=1

N Clustery|, ..., |Cluster; N Cluster;|)

Use the Digits data set available under sklearn: https://scikit-learn.org/stable
modules/generated/sklearn.datasets.load\_digits.html
Consider 10% of the data for training (179 samples). Each pattern is an 8 x 8-sized characre

where each value is an integer in the range 0 to 16. Convert it into binary form by replacing -
value below 8 by 0 and other values (> 8) by 1.

a. Use these 179 patterns with labels and the remaining without labels for this subtask. [’

KNN and label the patterns without labels. Obtain the % classification accuracy. Perforn
this task with k values from the set {1, 3, 5, 10, 20}.

Obtain the frequent itemsets for these 179 patterns using FP-growth by viewing ead

binary pattern as a transaction of 64 items. Repeat this task with different minsup values
from {0.1, 0.3, 0.5, 0.7}.
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