
AI FOR EDGE COMPUTING 

UNIT I – Introduction to Edge Computing and AI 

 

Evolution of Computing Paradigms: Cloud, Fog, and Edge 

Building Blocks of Edge Computing. 
 

Recapitulation 
 Cloud computing provides centralized processing but has latency limitations. 

 Fog computing acts as a bridge between cloud and edge. 

 Edge computing enables real-time, low-latency processing at the data source. 

 Edge AI brings intelligence closer to devices. 

 Future systems rely on integrated Cloud–Fog–Edge architectures. 

 
Introduction to Edge Computing and AI 

 
 Edge Computing is a distributed computing approach where data is processed near 

the source of data generation instead of a centralized data center. 

 It reduces latency, bandwidth consumption, and response time. 

 Edge AI refers to executing Artificial Intelligence (AI) and Machine Learning 
(ML) models directly on edge devices. 

 Edge computing supports real-time analytics and decision making. 

 Common applications include IoT systems, smart cities, healthcare monitoring, 
autonomous vehicles, and industrial automation. 



 
Evolution of Computing Paradigms 

 
1. Cloud Computing 

 Centralized computing model using remote data centers. 

 All data is sent to the cloud for processing and storage. 

 Provides high scalability and computing power. 

 Suffers from high latency and network dependency. 

 Not ideal for time-critical applications. 

2. Fog Computing 

 Intermediate layer between cloud and edge. 

 Data is processed at gateways, routers, or local servers. 

 Reduces latency compared to cloud computing. 

 Improves efficiency by filtering data before sending to the cloud. 

 Suitable for location-based services. 

3. Edge Computing 

 Computation is performed directly on end devices. 

 Very low latency and fast response. 

 Minimizes data transfer to cloud. 

 Operates even with limited internet connectivity. 

 Ideal for real-time and mission-critical applications. 

 
Comparison of Cloud, Fog, and Edge Computing 

 Cloud: Centralized, high latency, high bandwidth usage. 

 Fog: Semi-distributed, moderate latency, optimized bandwidth usage. 

 Edge: Fully distributed, minimal latency, low bandwidth usage. 

 



Role of AI in Edge Computing 

 AI models are trained in the cloud and deployed at the edge. 

 Enables real-time inference on local data. 

 Enhances privacy by keeping sensitive data local. 

 Reduces communication overhead with the cloud. 

 Enables autonomous and intelligent systems. 

 
Building Blocks of Edge Computing (7 Topics) 

 

 
1. Edge Devices 

 Sensors, actuators, cameras, and smart devices. 

 Generate and process data locally. 

2. Connectivity 

 Communication technologies like 5G, Wi-Fi, Ethernet, and LPWAN. 

 Ensures fast and reliable data transfer. 

3. Edge Computing Hardware 

 Embedded systems, microcontrollers, GPUs, NPUs. 

 Designed for low power and high performance. 

4. Edge AI and Analytics 

 Machine learning and deep learning algorithms. 



 Used for pattern recognition and prediction. 

5. Data Management 

 Local data filtering, preprocessing, and aggregation. 

 Reduces data sent to the cloud. 

6. Security and Privacy 

 Authentication, encryption, and secure boot mechanisms. 

 Protects data and devices from attacks. 

7. Cloud Integration 

 Cloud supports training, updates, and long-term storage. 

Works in coordination with edge systems. 

 

Introduction to Edge AI – Concepts and Motivation 

1. Edge AI (Concept) 
Edge AI running AI directly on devices near the data source instead of using cloud 
servers. 

Key points: 

 Data is processed locally 

 Faster response (real-time) 

 More privacy and security 

Example: 
A smart camera detecting intruders on the device itself. 

 
2. Motivation for Edge AI 
Edge AI is needed because cloud-based AI has limitations. 

Main reasons: 

 Low latency: Faster decisions 

 Privacy: Data stays on device 

 Less bandwidth: No need to send raw data 

 Reliable: Works without internet 

 Energy efficient: Saves power 

 
3. Embedded Systems (EBS) 
Embedded systems are small computers designed for a specific task. 

Role in Edge AI: 

 Run AI models 



 Connect sensors and actuators 

 Perform inference on-device 

Features: 
Low power, limited memory, real-time operation. 

 
4. Digital Signal Processing (DSP) 
DSP deals with processing real-world signals like audio, images, and sensor data. 

Why important in Edge AI: 

 Fast mathematical operations 

 Real-time signal processing 

 Helps in feature extraction before ML 

Example: 
Audio filtering before speech recognition. 

 
5. TinyML 
TinyML is Edge AI on very small, low-power microcontrollers. 

Key features: 

 Very small ML models 

 Ultra-low power usage 

 Runs on ARM Cortex-M MCUs 

Applications: 
Wake-word detection, gesture recognition, sensor monitoring. 

 
6. Challenges in Edge AI & TinyML 
Running AI on small devices is difficult. 

Major challenges: 

 Limited memory and processing power 

 Power constraints 

 Model optimization needed 

 Deployment complexity 

 Accuracy vs efficiency trade-off 

 



 Diagrams:

 

 

 

 

 
 

 

Architecture of Edge Computing Systems 

 

Edge computing architecture three tire 

1. Now, to understand this edge computing in more detail, that is in a systematic 
manner, 

2. we have now divided into three different layers of an edge-computing architecture,  



3. these layers may vary, but for our understanding of our lecture, let us understand let 
us assume that the edge computing architecture we can divide into three different layers. 

 

•The First layer is data source : (data source are the origins of data that generates 
information at edge) 

That layer data source comprises of sensors, database events, sources, machine logs, 
clickstream, social media, they are all nothing but the data sources with these data sources 
in place into the edge computing that means edge computing supports the data ingestion 
from these different sources. 

•The Second one is intelligent tier : (smart decisions are made using AI, ML) 

This intelligent tier cuts across the cloud and edges so there is a very well-defined boundary 
between edge and cloud where the training takes place on the cloud and the inferencing is 
run on the edge. But collectively, this overlap between the cloud and the edge is this 
intelligence layer. 

•The Third layer is actionable insight  : (here decisions are taken quickly) 

Actionable insight layer responsible for sending an alert to the relevant stakeholder the 
dashboards and showing some visualizations even the edge taking an action immediately 
shut down a controlling activator. And again, actionable insight takes place on the edge. So, 
therefore, you can see that these visualizations dashboard, and human-machine interaction, 
they are all supported at the edge itself. 

 

 

 

 

 

 



Differences between Edge AI and Cloud AI 

 

Ml on cloud vs ml on edge   

Ml on cloud AI Ml on edge AI 
 Remote monitoring and control 
 Merging remote data across multiple 

IOT devices 
 Near infinite storage to train machine 

learning and other advanced ml models 

 Low accuracy sight control loops 
require near real-time response 

 Pre-process data on promise 
 Intelligence on edge 
 Office operations 
 Data privacy and IP  section 

 

 

Brining machine learning to edge for IOT:

 

 

 



Enabling Intelligence at Edge layer for IOT: 

To manage the increasing amount of data that is generated by the devices , 
sensors , most of the business logic is now applied at the edge instead of the 
cloud to achieve low-latency and have faster response time for IOT device using 
machine learning at edge. 

Edge layer is delivering three essential capabilities 

1.local data processing 

2.filitered data transfer to the cloud  

3.faster decision-making 

1.local data processing: 

 In order deal with increasing amount of dat generated by sensor,most of 
the business logic is now deployed at the edge layer instead of cloud to 
ensure low-latency and faster response time. 

2.Filitered data transfer to cloud: 

 This edge computing approach significantly saves the bandwidth and 
cloud storage. 

3.Faster decision-making: 

 Ai has enabled new capabilities for edge computing. 
 Most of the decision-making is now taking advantage of artificial 

intelligence. 

The edge layer is becoming the perfect destination for deploying machine-
learning model trained in the cloud. 

 

Use Cases of Edge AI – Smart Cities, Healthcare, IoT, and 
Industry 4.0 

INTRODUCTION:  

Edge AI is transforming smart cities, healthcare ,IOT, and industry 4.0 by enabling 
real-time decision-making, reducing latency,and improving efficiency. 

KEY USE CASES:- 



1. Smart Cities:-  

Traffic Management: AI at the edge processes live video feeds from cameras to  
optimize traffic lights, and detect accidents instantly. 

Energy Optimization: Smart grids use edge AI to balance demand and supply. 

Waste Management: Sensors with edge AI predict waste bin fill levels. 

2. Health care:- 

 Smart hospitals: ICU devices stream patient data to edge AI system for real-time on 
critical conditions. 

 Medical imaging: Diagnostics by processing scans (X-rays, MRI’s). 

3. IOT (Internet of things):- 

Efficiency Energy: Smart meters and HVAC systems optimize usage locally. 

 Smart homes: Edge AI enables voice assistants, security cameras. 

 Predictive maintenance: IOT sensors in machinery detect wear and tear early. 

4. Industry 4.0:- 

 Smart manufacturing: Edge AI analyze production line data in real time to detect 
and optimize. 

 Robotics: Collaborative robots use edge AI for decision-making in assembly lines. 

 Worker safety: Wearable sensors detect hazardous conditions and alert workers 

instantly. 

Hardware for Edge AI – Edge GPUs, TPUs, FPGAs 

(1).Edge GPUs (Graphics Processing Units) 

 GPUs are the most common hardware for Edge AI due to their mature software 
ecosystems and powerful parallel processing capabilities. 

ROLE: Excellent for complex deep learning models, high-speed graphics rendering, and real-
time video analytics. 

Examples: NVIDIA Jetson series (e.g., Orin, Nano).  

 

2. Edge TPUs (Tensor Processing Units) 

 TPUs are Application-Specific Integrated Circuits (ASICs) designed from the ground up 
for accelerating neural network computations.  



Role: Optimized for high-speed, low-power inference, particularly for matrix multiplications 
and convolutions found in deep learning. 

Examples:  

1. Google Coral Edge TPU,  
2. Google Trillium TPU 

 

3. Edge FPGAs (Field-Programmable Gate Arrays) 

 FPGAs are unique because they can be reprogrammed at the gate level after 
manufacturing, allowing for custom hardware architectures tailored to specific 
algorithms.  

Role: Used for specialized AI tasks where low latency and deterministic performance are 
critical, such as 5G networks and industrial robotics 

Examples: AMD (Xilinx) Versal and Zynq series, Intel Agilex FPGAs.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Types of Edge Devices – Raspberry Pi, Jetson Nano, Cora 

Edge devices in edge computing range from small IoT sensors, smart cameras, and 

wearables processing data locally to more powerful edge servers. 

RASPBERRY PI :  

A Raspberry Pi acts as a versatile, low-cost, credit-card-sized computer for edge computing, 

enabling data processing and analysis directly at the data source (the "edge") rather than 

sending everything to the cloud, making it ideal for IoT, robotics, and AI applications by 

offering local intelligence, reduced latency, enhanced security, and offline functionality. 

 

Examples of Edge Projects: 

1. Smart Cameras 

2. Predictive Maintenancell 

3. Environmental Monitoring 

4. Retail Analytics 

 



 

 

JETSON NANO: 

NVIDIAJetson Nano is small, powerful, low-power single-board computer designed for edge 

computing and AI (Artificial Intelligence)enabling developers, students, and enthusiasts to 

run deep learning models and AI inference directly on devices, rather than relying on the 

cloud 

Key Features for Edge AI: 

1. GPU-Accelerated Performance  

2. Power Efficiency 

3. Compact Form Factor 

 

 

 

 



 

 

 

 

 

 

 

 

CORAL:  

Coral Edge Computing refers to Google's hardware and software platform, centered around 

the Edge TPU (Tensor Processing Unit), designed for efficient, low-power Machine Learning 

(ML) inference directly on edge devices (like IoT gadgets, wearables, cameras) for fast, 

private, and offline AI, running TensorFlow Lite models without relying on the cloud for 

every task.  

 

 



 

 

 

Challenges in Deploying AI on Edge 

 

 Limited memory/compute 

 Power constraints 

 Model size too large 

 Hardware diversity 

 Security issues 

 



UNIT II – AI Models and Edge Inference 

1. Types of AI Models Suitable for Edge Deployment 

Edge devices (Raspberry Pi, Jetson Nano, smartphones, microcontrollers) have limited CPU, 
GPU, RAM, power, so models must be lightweight and efficient. 

a) CNN-based Models 

 Used for vision tasks. 

 Examples: 

o MobileNet 

o SqueezeNet 

o ShuffleNet 

o EfficientNet-Lite 

b) RNN-based Models 

 Used for speech, time-series data. 

 Examples: 

o LSTM, GRU small versions. 

c) Transformer-based Tiny Models 

 Optimized NLP transformers for edge. 

 Examples: 

o DistilBERT 

o MobileBERT 

o TinyBERT 

d) TinyML Models 

 Extremely small models (<100 KB) for microcontrollers (Arduino, ESP32). 

 Frameworks like TensorFlow Lite Micro. 

2. Model Optimization Techniques 

(How to make ML models smaller, faster, and suitable for edge devices) 



Modern ML models are often too large and slow to run on mobile phones, Raspberry Pi, IoT 
devices, or embedded systems. 
Model optimization helps us reduce size, improve speed, and lower power consumption 
with minimal loss of accuracy. 

a) Quantization 

꾆 What is Quantization? 

Quantization means reducing the numerical precision used to store model weights and 
activations. 

꾆 Example 

Instead of using 32-bit floating point (FP32) numbers, we use lower precision numbers: 

FP32 → FP16 → INT8 → INT4 

꾆 Why this helps 

 Smaller numbers need less memory 

 Calculations become faster 

 Less power is consumed (important for battery devices) 

꾆 Benefits 

✔ Model size reduces by 2× to 4× 

✔ Inference speed increases (especially on ARM CPUs) 

✔ Lower energy consumption 

꾆 Simple analogy 

Think of money: 

 ₹100.5678 (FP32) 

 ₹100.56 (FP16) 

 ₹101 (INT8) 

For most decisions, ₹101 is good enough, and it’s much easier to handle. 

꾆 Tools 

 TensorFlow Lite (TFLite) 

 ONNX Quantization Toolkit 

 PyTorch Quantization 



꾆 Where used 

 Mobile apps 

 Edge AI (Raspberry Pi, Jetson Nano) 

 Real-time inference systems 

b) Pruning 

🔹 What is Pruning? 

Pruning means removing unnecessary parts of a neural network that contribute very little 
to the final output. 

🔹 Key idea 

Not all neurons or connections are equally important. 

꾆 Types of Pruning 

膆膊 Unstructured Pruning 

 Removes individual weights 

 Creates sparse matrices 

 Less hardware-friendly 

Example: 

Weight = 0.00001 → removed 

膆膋 Structured Pruning (Better for hardware) 

 Removes entire neurons, filters, or channels 

 Works well on GPUs and CPUs 

Example: 

Remove one full CNN filter 

꾆 Benefits 

✔ Model size reduced by 30% – 90% 

✔ Less computation 

✔ Faster inference 

꾆 Simple analogy 

Imagine a classroom: 

 Some students never participate 



 Removing them does not affect learning outcome 

c) Knowledge Distillation 

꾆 What is Knowledge Distillation? 

A large, powerful model (Teacher) trains a smaller model (Student). 

The student learns: 

 Final predictions 

 Probability distributions 

 Decision patterns 

꾆 Why use it? 

Instead of training a small model from scratch, we learn from a smarter model. 

꾆 Benefits 

✔ Student model is: 

 Smaller 

 Faster 

 Almost as accurate 

꾆 Real examples 

Teacher Student 

BERT DistilBERT 

ResNet MobileNet 

Large CNN Tiny CNN 

꾆 Simple analogy 

 Teacher explains concepts deeply 

 Student learns shortcuts 

 Student answers quickly but correctly 

d) Transfer Learning 

꾆 What is Transfer Learning? 



Reuse a pretrained model and train only the last layers for a new task. 

꾆 Why it works 

Early layers learn general features: 

 Edges 

 Shapes 

 Colors 

Only final layers need retraining. 

꾆 Benefits 

✔ Much faster training 

✔ Requires less data 

✔ Works very well on edge devices 

꾆 Common applications 

✔ Face recognition 

✔ Crop disease detection 

✔ Vehicle detection 

✔ Medical image classification 

꾆 Example 

ImageNet-trained CNN 

↓ 

Replace last layer 

↓ 

Train on crop disease dataset 

Summary Table (Great for exams) 

Technique Main Goal Benefit 

Quantization Reduce precision Smaller, faster, low power 

Pruning Remove unnecessary weights Less computation 



Technique Main Goal Benefit 

Knowledge Distillation Teach small model Fast + accurate 

Transfer Learning Reuse pretrained model Saves training time 

 

 

3. Inference Acceleration Using Edge Hardware 

a) Edge TPUs 

 Google Coral Edge TPU 

 Optimized for INT8 models 

 Extremely fast inference 

b) GPU Accelerators 

 Nvidia Jetson Nano / Xavier NX 

 Supports TensorRT optimization 

c) NPUs / AI Accelerators 

 Smartphone AI engines (Qualcomm Hexagon DSP, Apple Neural Engine) 

d) FPGA-based Acceleration 

 Low-power programmable hardware for custom edge AI applications. 

 

4. Lightweight Models for Edge AI 

膆膊 MobileNet – Practical View 

What is MobileNet? 

MobileNet is a CNN designed for mobile & edge devices. 

Key idea (simple) 

踰踱踲踳 Replace heavy convolution with Depthwise Separable Convolution Instead of: 

Normal Convolution = Slow + Heavy 



MobileNet uses: 

Depthwise Convolution  +  Pointwise (1×1) Convolution 

Why this helps? 

 8–9× fewer calculations 

 Smaller model 

 Faster inference 

Where MobileNet is used (REAL examples) 

 Mobile camera face detection 

 Object detection on Jetson Nano 

 Smart cameras 

 Android apps 

Practical pipeline 
Camera Image 
   ↓ 
Resize (224×224) 
   ↓ 
MobileNet 
   ↓ 
Class / Bounding box 

Performance 

Device FPS 

Mobile phone 30–60 FPS 

Jetson Nano 20–30 FPS 

膆膋 SqueezeNet – Practical View 

What is SqueezeNet? 

SqueezeNet is a very small CNN model that gives AlexNet-level accuracy with much 
smaller size. 

Key idea 

踰踱踲踳 Use Fire Modules 

Fire Module = 

  Squeeze layer (1×1 conv) 

  Expand layer (1×1 + 3×3 conv) 



This reduces: 

 Parameters 

 Model size 

Why SqueezeNet? 

 Model size ≈ 5 MB 

 Good accuracy 

 Faster than older CNNs 

Where SqueezeNet is used 

 Embedded vision systems 

 Industrial inspection 

 Older edge devices 

Practical pipeline 
Image 
  ↓ 
SqueezeNet 
  ↓ 
Classification 

ʥ TinyML – Practical View (Very Important) 

What is TinyML? 

踰踱踲踳 Running ML models on microcontrollers (ESP32, STM32, Arduino) 

TinyML is not one model, it is a method. 

Typical TinyML models 

 Small CNNs 

 Decision trees 

 Linear models 

Model size 

 10 KB – 300 KB 

 Stored in Flash 



Real TinyML example (ESP32) 

Use case: Voice keyword detection 

Microphone 

   ↓ 

MFCC feature extraction 

↓ 

Tiny CNN 

   ↓ 

ON / OFF command 

 

Why TinyML works 

No GPU needed 
Low power (battery) 
Real-time inference 

 

TinyML limitations 

 Cannot run MobileNet fully 

 Very limited memory 

 Simple tasks only 

 

 

 

MobileNet vs SqueezeNet vs TinyML 

Feature MobileNet SqueezeNet TinyML 

Runs on Mobile / Edge Edge Microcontrollers 

Model size 5–20 MB ~5 MB <300 KB 

Power Medium Medium Very Low 

Accuracy High Medium Low–Medium 



Feature MobileNet SqueezeNet TinyML 

Use cases Vision Vision Sensor / Audio 

 

 

 

5. Frameworks for Edge Deployment 

a) TensorFlow Lite 

 Convert full TensorFlow models to light versions. 

 Supports: 

o Quantization 

o Edge TPU 

o TFLite Micro (for microcontrollers) 

b) ONNX Runtime 

 Universal format 

 Runs on many devices (GPU, CPU, FPGA, NN accelerators) 

c) OpenVINO (Intel) 

 Optimized for Intel CPUs, VPUs (Myriad-X), integrated GPUs 

 Good for computer vision 

d) PyTorch Mobile / ExecuTorch 

 PyTorch edge inference toolkit 

 Works for Android, iOS, embedded devices. 

6. Compilation Tools for Edge AI 

a) Apache TVM 

 Converts models to optimized hardware-specific binaries. 

 Supports: 

o ARM 



o CUDA 

o OpenCL 

o CPU/GPU/FPGA 

b) Glow (Facebook) 

 Neural network compiler 

 Generates accelerator-ready code 

c) XLA (Accelerated Linear Algebra) 

 Google compiler used for TensorFlow 

d) TensorRT 

 Nvidia inference accelerator 

 Converts FP32 → FP16 / INT8 engines 

7. Energy and Latency-aware Inference 

Important for battery-powered and real-time edge systems. 

Techniques 

 Use quantized models (INT8 → lowest power) 

 Use smaller batch sizes (real-time applications) 

 Use hardware accelerators (GPU/NPU/TPU) 

 Use model caching 

 Perform on-device postprocessing to minimize cloud communication. 

Measurements 

 Latency: time per inference (ms) 

 Throughput: inferences per second (IPS) 

 Energy per inference (Joules) 

 



 
UNIT III – Edge-Centric Architectures and Data Management 

 

Distributed AI Architectures: Edge, Fog, and Cloud 

 

Latency sensiƟve applicaƟon arch and applicaƟon: 

 Edge controller (EC)  is also called Edge orchestrator ,which is a centralized 
component responsible for planning, deploying and managing applicaƟon services in 
the edge-cloud system. 

 Ec   consists  of the following components: applicaƟon manager, infrastructure 
manager, monitoring and planner. 

 The locaƟon  of the edge controller can be deployed in any layer between edge and 
cloud 

The applicaƟon manager: 



      

 It is responsible    for managing applicaƟon running in the edge-cloud system. 
 Mange applicaƟon running in edge-cloud system 
 ApplicaƟon need resources such as cpu on among etc 
 Support from edge cloud 

The infrastructure manager: 

 the role of the infrastructure manager is to be in charge of the physical resources in 
the enƟre edge-cloud system. for instance, processors, networking and the 
connected  iot devices for all edge nodes 

 the main responsibility of this components is to monitoring applicaƟon tasks(eg., 
computaƟonal  delay and communicaƟon delay) and computaƟonal resources 

planner: 

the main  role of this components is to propose  scheduling policy of the offloading 
tasks in the edge-cloud system and the locaƟon where they where they will be 
placed(eg., local edge ,other edges or the cloud) 

 
 
 
 

 latency-sensiƟve applicaƟon have high sensiƟvity to any delays accrue in 
communicaƟon or computaƟon during the interacƟon with the edge-cloud 
system 

 first, criƟcal applicaƟon ,which must be processed in the cars computaƟonal 
resources, for instance, autonomous driving and road safety applicaƟon 



 second, high-priority applicaƟon, which can be offloaded but with minimum 
latency, such as image aided navigaƟon, parking navigaƟon system and traffic 
control. 

 Eg., Entertainment , mulƟmedia, and speech processing 
  

 

CollaboraƟve Intelligence – Edge-Cloud Offloading Strategies 

Vertical And Horizontal  Offloading For Cloud-Edge 
 
Introduction: 
1.Edge computing is a paradigm that enables virtualized computational and communication 
resources to be deployed near the source of service  workloads 
Instead of relying on massive data centers 

 
2.This allows for a reduction in end-to-end delay for accessing this resources and makes it 
more suitable for real time services 

 
3.Additionally,edge computing enables virtualized  resources to be geographically  
distributed which can address the requirements of mobility and geo-distribution of mobile 
and iot services 

 

Cloud-Edge Computing: 
 



1.Cloud edge computing can efficiently accommodate different types of services 
With end devices and network edges suitable for real time services 

 
2.Integration of cloud and edge computing is proposed to take advantage of the benefits 
both technologies offer 

 
3.Cloud-edge computing should consider both vertical and horizontal offloading between 
services nodes 

 
EX :  
 

 A smart home system that utilizes edge computing cloud provide a more 
secure,efficient and cost effective solution for controlling and monitoring devices such 
as lights,cameras,doorlocks 

 
 The system would  have a gateway device,such as a router,that would provide a local 

connection for each device 
 
 

Vertical offloading : 
 

*Vertical offloading refers to the process of transferring tasks or services from cloud or data 
centers to edge nodes in orders to reduces latency. 

 
*It is also known as cloud-edge computing and it is used to reduce burden of the 
cloud. 

 
Horizontal offloading : 

 
*Horizontal offloading on the other hand, is the process of transferring tasks of 
services between edge nodes in order to reduce latency. 

 
*It is used to improve the capacity of edge nodes and can also be used to reduce the 
load on the cloud 
Architecture of  Collaborative Cloud-Edge Computing: 

 



 
 

First tier : 
 

*The first tier of the hierarchy is a composed of end devices, such as smartphones,ip 
cameras and iot sensors. 

 
Second tier : 
*The second tier comprises access network technologies such as  internet , wi-fi and 
4g/5g. 

 
*The edge nodes are capable of processing part of workloads. 

 
Third tier : 

 
*The third tier consists of horizontal and vertical offloading from the edge nodes to 
the central offices. 

 
Fourth tier : 

 
*The fourth tier consisting of horizontal offloading from the central offices to 
neighbouring central offices and vertical offloading remote data centre. 

 
*The data center is the top-most tier of the cloud-edge computing hierarchy and is 
responsible for processing the remaining workloads. 

 

As for 1st MID  


